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ABSTRACT

We review the symmetry method that can be used to solve differential and difference

equations. We use the symmetry method to solve the sixth order difference equation.

Un,
An + Bnunun+3

Unt6 =

where the initial values ug, uy,--- ,us are arbitrary nonzero real numbers and the

eighth order difference equation

un
Up4+8 =
An + Bnunun+2un+4un+6
where the initial values ug, uy, - - - ,u; are arbitrary nonzero real numbers by deter-

mining Lie groups of symmetries.

Keywords: Differential equations, Difference equations, Lie groups, Symmetry

method.
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1. LITERATURE REVIEW

Nonlinear differential and difference equations have important applications in dif-
ferent fields of science and technology. Consequently, there is a need for methods
that can be used to solve such equations. The idea of using change of variable was
introduced, which transforms an ordinary differential equation (ODE) into a simpler
equation by Sophus Lie (1482). He used symmetry to solve differential equations
by determining Lie groups of symmetries of a given ordinary differential equation.
For an introduction to symmetry method for ODFEs, see [Olver (1993), Bluman and
Kumei (1989), Stephani (1989) and Hydon (2000)].

Meada (1987) had shown that difference equations of order one can be solved by
Lie’s method and he showed that the linearized symmetry condition (LSC) for such
difference equation tends to a set of functional equations. Quisple and Sahdevan
(1993) were interested by this method and they extended Meada’s idea to higher
order difference equations but in restricted form. Levi et al. (1997) expanded the
linearized symmetry condition as a series in powers of u,, but the expression derived
by them was complicated. Hydon (2000) introduced a method for obtaining the Lie
symmetries and used it to reduce the order of the ordinary difference equation and
to find the solution. Then, he applied this method to second order difference equa-
tions. Recently, symmetry methods have been extended to higher order difference
equations [[4], [5], [7], [8]]. The idea consists in finding symmetries of the equations

and use them to lower the order of the equation.

In this Thesis, we study the symmetry method for ordinary differential and

difference equations. We investigate the exact solutions of sixth and eighth order
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nonlinear difference equations using a group of transformations (Lie symmetries).

This Thesis is organized as follows, in chapter one, we investigate symmetries
methods for first order differential equations and we show how can we use symmetry
to solve these equations. Then, we generalize the symmetry method for higher order
difference equations and we show how can we use symmetry to solve non-linear higher
order difference equations. In chapter two, we investigate symmetry methods for
first and second order difference equations, and we show how can we use symmetry
to solve these equations. We generalize the symmetry method for higher order
difference equations and we show how can we use symmetry to solve non-linear
higher order difference equations of third order. In chapter three we investigate
the exact solutions of (4.1.1) and (4.2.1) non-linear difference equations using Lie

symmetries.

In the future we want to study stability for difference equations (4.1.1) and
(4.2.1).



2. PRELIMINARIES

2.1 Symmetry Methods for Differential Equations

2.1.1 Symmetry of Geometrical Object

To understand the concept of symmetries of ordinary differential equations, it is
suitable to consider symmetries of objects. A symmetry of a geometrical object
is an invertible transformation that maps the object to itself. The points of an
object may be mapped to different points, but the object as a whole is unchanged
by a symmetry. For example, consider the rotation of a regular octagon about its

diameters ae, bf, cg, dh (see figure 2.1).

Fig. 2.1: Symmetries of an Octagon

We observe that the points themselves may change but the whole object stays
as it is, so the transformation is a symmetry. Also, if the angle of rotation is an

integer multiple of 7, the object is mapped to itself, so the transformation is a
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symmetry (see figure 2.2).

Rotation by E

3 .
counter clockwise

Fig. 2.2: Transformation by 7

Moreover, every geometrical object has a trivial symmetry which is the trans-
formation that maps every point to itself. In this example the rotation of an octagon

by 27 is a trivial symmetry (see figure 2.3).

Rotation by 21t

c .
counter clockwise

Fig. 2.3: Transformation by 27

In addition, each symmetry of geometrical object has a unique inverse which is
a symmetry. For example, let T" denote a rotation of a regular octagon by 7. Then
the inverse of T’ (T!) is a rotation by 2 (see figure 2.4 and 2.5).

Rotation by g

c .
counter clockwise

Fig. 2.4: Transformation by 5

Definition 2.1. [9] A symmetry is a diffeomorphism that maps the set of solutions
of the ODE to itself.



2. Preliminaries 5

9 h
a b 3
Rotation by 3% a
2 f
h c .
counter clockwise
— b
g d
d 3
f e

Fig. 2.5: Transformation by 37“

b c d e a b
a ac i b N
_
3 9
h b 9 d
g T a h B s

Fig. 2.6: Composition of transformation § and 37”

Symmetry must preserve the shape of the object, that is the distance between
any two points of the object must be preserved. Therefore, the only transforma-
tions of Euclidean space consist of rotations, translations, and refections. We define

symmetry as:

Definition 2.2. [9] A transformation is a symmetry if it satisfies the following

properties:

1. The transformation preserves the structure.

2. The transformation is a diffeomorphism, that is, it is a smooth invertible map-

ping whose inverse 1s also smooth.

3. The transformation maps the object to itself [e.g., a planar object in the (x,y)

plane and its image in the (Z,y) plane are indistinguishable/.

We restrict attention to transformations satisfying conditions 1 and 2. Such
transformations are symmetries if they also satisfy condition 3, which is called the

symmetry condition.

Example 2.1. [9] The ordinary differential equation (ODE)

dy
A 2.1.1
. (2.1.1)
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has a symmetry
To:(z,y) = (z.7) = (@,y+a),aeR

The transformation is a translation in y by «a.

e T, preserves the structure, that is it preserves the distance between two points

of the objects (solution curves).

e T, is a smooth transformation of the plane and is invertible if its Jacobian is
nonzero, so we consider the condition z,y,—Z,y, # 0 (the inverse of translation

by « is a translation by —a«)

e T, maps a point (z,y) on one solution curve to point (Z, ) on another solution,

therefore

dy
ﬁ_o when @—0

y(x)

y(x)

‘| ‘x

Fig. 2.7: The transformation is a translation in y by «

Definition 2.3. [10] A group is a set H together with a group operation called group

multiplication such that the following axioms are satisfied:

Closure: h; € H and hj € H, then h; x hj € H.

Associativity: For allh; € H h;y € H, hy, € H, then (hjxh;)xhy = h;jx(hj*hy).

Identity: There 1s a group operation I, called the identity operator with the
property that (h; x I) = (I x h;) = h;.

Inverse: For each h; in H there is an inverse, denoted by h;l such that (h; *
hit) = (h;'xhy) =1.

1
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Theorem 2.1. [7] Let H be the set of all symmetries of a geometrical object then H

is a group under composition of the transformation.

Proof. Let T, and T, be two symmetries of an object then the composite transfor-
mations T,7T,, and T,T, are symmetries of this object, because they are invertible
and they keep the object unchanged.

The trivial symmetry denoted by Ty is the identity map, that is, for any T, € H,

T, Ty = ToT, = 1,.

And for any T, € H, the transformation that reverts the object to its original state,

is the inverse of a transformation, that is,
T.T;' =T'T, = Ty.
It’s clear that, composition of transformations is associative, so H is group. [ |

Definition 2.4. (Lie Group)

Let (x,y) and (o(z,y,a),¥(x,y,«)) be two points in the Euclidean plane, and for
ain R, let T, : (z,y) — (o(z,y,a),¥(x,y,a)) be a transformation, depending on
the parameter «, that takes point (x,y) to point (¢(x,y,a),¥(x,y,«)). We say the
set of transformations T, is a (additive) Lie group H if the following conditions are
satisfied:

1. T, is one to one, that is we assume that p(z,y, ) and P(z,y, ) are function-

ally independent 1.e., Jacobian does not vanish.

P Py
Yo by

Also, T, is onto that is, it is a transformation that carries any point (z,y) in

£0

the (x,y)-plane into a new position (z,y) such that (z,y) = To(z,y).
2. LetT,, and T,, be transformations then

Ta1 B Tocz = Laj+as
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that s,

Toa (90<x7 Y, 052>7 ¢(5U> Y, 052>> = (30(1}, Y, aq + OQ)? ¢($7 Y, aq + 062))

= Tozl—i—az

3. Ty is the identity transformation. That is,

TO : (a:,y) = (QO(QZ,Q,O),QXJ(Z',?/,O)) = (xay)

It can be written as
To(w,y) = (z,y) =1

4. For each oy there exists a unique oy = —ay such that T,, oT,, = Ty = I.
That 1is,

Tos (p(z,y, 1), ¥ (2,9, 1)) = (o, y, 00 — an), (2,9, 01 — an))
= (p(2,9,0),¢(z,y,0))
=T,
=1

In addition to these four group properties, (¢(x,y,®),¥(x,y), ) is infinitely
differentiable with respect to (z,y) and analytic with respect to a, we say H is a
one-parameter Lie group or a Lie point transformation. For example, the infinite

set of symmetries is a one-parameter Lie group.

Example 2.2. Consider the transformation

T, : (ZE,y)H (I—i-(){,y—Oé)

1. T, is one to one since

10
01

P Py
Vo Wy

Also T, is onto since any point (z,y) in the (z,y)-plane is mapped into a new

— 140

position (Z, ) such that

(f>g> :Ta(j:_avg—i_a)
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2. Let T,,, and T,,, be transformations then
To,0To, =To(x+aq,y — 1)
=(r+ay+ o,y —a; — )
= (v + (a1 + a2),y — (a1 + a2))
= Totas
3. Tj is the identity transformation since
To: (z,y) = (2 +0,y = 0) = (z,9)
So
To(z,y) = (z,y) =1
4. For each «; there exists a unique a, = —ay such that
To,0To, =To,(x+aq,y — az)

=@+o+ay—o—a)

= (z,y)
=T,
=7

So the transformation T, is a Lie group.

2.1.2 Symmetries of Differential Equations

A transformation of a differential equation is a symmetry if every solution of the
transformed equation is a solution of the original equation and vice versa.
Definition 2.5. [9] Consider the following transformation

T,:2* 2%z, 2™:a),s=1,--- ,N.

where a 1s a real parameter. Then T, is one-parameter local Lie group if the following

conditions are satisfied:
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1. Ty s the trivial symmetry, so that x° = x* when o = 0.
2. T, is a symmetry for every « in some neighbourhood of zero.
3. ToTs = Toip for every a, B sufficiently close to zero.

4. Each 7° may be represented by a Taylor series in « (in some neighbourhood of

a=0), so

:fs(xly... 7xN;O{):x5+a€S(l,17..- 7$N)+O(Oz2)7s:1,--- N,

The term “local” is used because the conditions need only apply in some neigh-
bourhood of o = 0. Also, the maximum size of the neighbourhood may depend on

S

x%, s =1,---,N. A local Lie group may not be a group, it needs only satisfy the
group axioms for sufficiently small parameter values.

From condition 2 we have T;! = T_,, when |a/| is sufficiently small.

A one parameter Lie group of symmetries of a differential equation will depend con-
tinuously on the parameter. For simplicity, we call symmetries that belong to a one

parameter local Lie group, Lie symmetries.

Lie groups may not necessary be defined over the entire real number plane. We
will be dealing with local groups, that is, the group action may not be defined over

the whole plane. The following example illustrates this:

Example 2.3. [9] The Riccati equation

dy y+1 92
— = = 2.1.2
dx T + 3 ( )

has a symmetry

To:(@y) = (@5 = ((—— 77—) (2.1.3)

which is defined only if o < % when z > 0 and o > % when x < 0. If a = % then

the transfomation is undefined. If o« = 0 then

(7, 9) = (z,y)
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which is the identity transformation. Therefore, the interval on which T, is defined
must include the origin. If x > 0 and o > % then the identity is not included in this
interval. Similarly, if < 0 and a < % then the origin is not included. Therefore,
in order for the group to have an identity, it can only be defined when o < % for
x> 0and a > % for x < 0. This means that, for a fixed «, the domain of T, is

—§<x<éandyeR. Therangeis—%<izandyeR.

The symmetry T, defined by (2.1.3) satisfies the conditions:

1. T, is one to one, if (z1,y1) and (z2,y2) are both mapped to the same point

(Z,7y) then
gt 2 (2.1.4)
1 —ax; 1 —axs
Then,
r1(1 — axg) = x9(1 — axq)
T1 — XX = T9 — AT2T1
we have
1 = T2
Similarly,
_ Y1 Y2
y = =
1 —ax; 1 — axs
we have

Y1 = Y2

Also T, is onto since if

&I
Il

1—oax
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Then
rT =T — QITx
we have
X
T = —
1+ azx
and consider
j=
1—ox

Then

1+azx 1+azx

Therefore, there is a point (x,y) that corresponds to every point (Z, 7).

2. Let T, and T,, be two transformations then

Toy 0 Toy = T, ( T Y )

)
l—ox 1 — oz
x Yy
_( l—aqx l-aix )
_ r ) T
1 ) l—a1x ]' o) l1—ajx

:(1 — (ai az)r’1— (a1y+ 042)9[:>

altasg

The domain of this composition is ——— < o < —— and y € R and the
a1+ag a1tasg
1

m<§:andgj€ﬂ%.

range is —

3. Tj is the identity transformation since

To - (z,y) = (7,9) = (
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4. For all a; € R there exists a unique ay = —a; such that
Ty 0 To, = Toy [ —2 Y
1 -z’ 1l —aqx
Y
:( —o1T l—aix >
1-@21 a1z 1_OZQI zlw
_ Yy
1— al—alxl—(al—al)x
= (2,y)
=T
=17

So (2.1.3) is a Lie group defined only when v < 2 if 2 > 0 and a > 1 if 2 < 0.

2.1.3 The Symmetry Condition

Consider the first-order differential equation of the form

jz w(z,y) (2.1.5)

The symmetry condition is important to find any symmetry that maps the set
of solution curves in the (z,y) plan to an identical set of curves in the (z,y) plane.
So the symmetry equation for (2.1.5) is

dy dy
— =w(x,y) when — =w(z, 2.1.6
5z = w(@ ) 5 = w@y) (2.1.6)
We can write this condition using the total derivative operator
dy _ Doy _ Ust+ 0
dz D, z,+ %z,

d
=w(Z,y) when d—y =w(z,y) (2.1.7)
x

where the total derivative operator is

0 dyo d*y 0

Dy=—+——+—"5—
Ox * dz Oy * dz? oy’
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From equation (2.1.5), we get

D,y Gotw@y)y,

= = 2.1.8
D, I+ w(z,y)T, w(z,9) ( )
Example 2.4. [9] The differential equation
d
% =y’e " +y+e” (2.1.9)
has a symmetry
(Z,7) = (v + 20, ye**) (2.1.10)

we substitute equation (2.1.9) into the symmetry condition, we get

Ypt <y26_1’ +y+ e“”) Uy

=w(Z,7) (2.1.11)
ot (yzex +y+ ez) Ty
where
Y = 0
gy — 62a
Ty =1
zZy, =0
So
(Ve ™™ +y+ e")e* = w(T,7) (2.1.12)

On the left hand side of equation (2.1.12), we have

(y2€f:p +y+ ex>62a — y2ef:r62a +ye2a 4 ez€2a
62&
— y26—ze2ozT 4 ye2a 4 er€2a
e2a
=gl T+ y+e”

= w(z,9)
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On the right hand side of equation (2.1.12), we have

w(@,g) =g’ T +y+et
— y264ae—x—20¢ + y€2o¢ 4 ex—i—?a

N
So the symmetry condition is satisfied and (2.1.10) is a symmetry of equation (2.1.9).
Example 2.5. Consider the Riccati equation

ol el x#0 (2.1.13)
has a symmetry

y) (2.1.14)

we substitute equation (2.1.13) into the symmetry condition, we get

Yot <:cy2 — 2 m%)yy

=w(Z,7) (2.1.15)
T+ (:L“y2 - %3)%
where
Ye =0
gy — 6—2&
T, = €“
z, =0
So
(ny o Q?y o x%) €—2a
=w(Z,y) (2.1.16)
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On the left hand side of equation (2.1.16), we have

e* e* B e* e*
B ryle e 2y 1
T e er g edagd
2y 1
=T T E

o251
w(Z,9) = Ty? — = — —
@y =29~ —~ =
o —da 26_2ay 1
= e re —
Yy ey 630‘.1'3
2 1
= zye 3a ye—3a - —3a
xXr s
2y 1 —3a
= 3’/’ _—— —_—
(2y —— = 3)

So the symmetry condition is satisfied and (2.1.14) is a symmetry of equation
(2.1.13).

2.1.4 A Change of Coordinates

Any ODE that has a symmetry of the form

(7,9) = (v,y + @)

can be reduced to quadrature. This means that the differential equation can be
solved by an integrating technique. For all a in some neighbourhood of zero, the

symmetry condition reduces to

w(z,y) =w(z,y + ) (2.1.17)
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Differentiate equation (2.1.17) with respect to a at v =0

0 0
8_aw(x7y) - a_aw(xay + Oé)

_&u@_x Ow Oy

0= 500 T 3y 9a

From equation (2.1.17), we get

and

So

0w

0= —
dy
Thus the original ODE is a function of x only and then

dy _

5, = @@

and
y = /w(x)dx—i—c

While a symmetry of the form in Equation (2.1.17) does not exist in cartesian
coordinates for all differential equations, it is possible to find such a symmetry in a

different coordinate system.

Example 2.6. Consider the ODE

dy Y +aty—y-u

= 2.1.18
de vy’ +a34+y—x ( )

Equation (2.1.18) is difficult to solve in cartesian coordinates, to solve it we rewrite

the equation in terms of polar coordinates. Let

x=rcosf, y=rsinf (2.1.19)
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then
ox Ox )
dx = Edr + %dé’ = cos fdr — rsin 6do (2.1.20)
and
_ Oy AW .
dy = Edr#— %dG = sin 0dr + r cos 0df (2.1.21)

Substituting (2.1.19) into (2.1.18), we get

dy  r*sin®6 + 13 cos? Osinf — rsinf — rcos 6

dr  r3cosfsin?0 +r3cos3 0+ rsinf — rcosf

73 sin 6 (sm20 + cos? 9) —rsinf — rcos@

7’3COS(9(SiH2(9+C0829> +rsinf —rcos@

r3sinf — rsinf — rcosf

r3cos@ 4+ rsinf — rcos 0
r2sinf — sinf — cos 0

r2cosf + sin @ — cos 0
sin@(r* — 1) — cos @

= 2.1.22
cos@(r? — 1) +siné ( )

Substituting (2.1.20) and (2.1.21) into (2.1.22), we get
dy  sinfdr+rcosfdf  sinf(r* —1) — cosf

dz ~ cosOdr —rsinfdf  cosO(r? —1) +siné

Cross multiplication this equation, we get

(sin Odr + r cos 9d0) (cos O(r* — 1) + sin 9) = ( cos Odr — rsin 9d9) <sin 0(r* — 1) — cos 9)
Solving this equation to get %
sin@ cos 0(r? — 1)dr + sin® fdr + r cos® 0(r* — 1)df + r cos 0 sin 6d6
= cos@sinf(r* — 1)dr — cos® Odr — rsin® 0(r* — 1)df + r sin 6 cos Od6
S0
sin?0dr +rcos?0(r* — 1)df = — cos® Odr — rsin®O(r® — 1)d6
sin? Odr + cos®@dr = —rcos®0(r* — 1)df — rsin® 0(r* — 1)df

dr = —T(C082 0(r* —1)d6 + sin® 6(r* — 1)) do
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we have

dr _ 2 2 .2
i r(r®—1) (cos ¢ + sin 9>
=r(l—1r?) (2.1.23)

This equation is separable in this coordinate system

/L:/de

r(1—r?)

/ldr—l/ ! dr—i—l/ ! dr =10
T 2 1+7r 2 1—7r

1 1
lnr—éln(l—i—r)—iln(l—r) = 0

we have

So

ln; = 0
=

Equation (2.1.23) has the symmetry
(7,0) = (r,0 + ) (2.1.24)

The symmetry condition for (2.1.24) is
di  To+ %7,

a8~ B+ 0,

where
7=
79 =0
Gy =1
g, —
we have
% =r(l—1?)

So the symmetry condition is satisfied. Figure (2.8) shows some of the solution
curves for Equation (2.1.23). The solution curves are rotational symmetries. When
written in polar coordinates, the symmetry for Equation (2.1.23) indicates that the

rotational symmetries are translations in 6.
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Fig. 2.8: Solution curves of equation (2.1.23).
2.1.5 Orbits

The following definition is important for solving differential equation by using sym-

metry methods.

Definition 2.6. [9] Consider a particular point (x,y) and the action of additive Lie
group

To: (z,y) = (3,9) = (Z(z, y; ), Y(z, y; )
As a € R, the point (T, y) moves in the plane along a continuous curve. This curve
is called the orbit of (x,y) under the group. If the Lie group is a nontrivial symmetry
group of a differential equation, then an orbit of the group takes a continuous path
transverse to solution curves of the differential equation g—g = w(z,y). An orbit of
solution curves is a continuous family. Along this orbit, changes in o map solution

curves to other solution curves.

Example 2.7. In example (2.1) the orbit of a point on a solution curve of this

differential equation are vertical lines under the symmetry. For instance, the orbit
of the point (1, 0) includes {(1,1),(1,2),---} (see figure 2.9).
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(1,3)

(1,2)

(1,1)

Fig. 2.9: Solutions to Equation (2.1) and orbit of the point (1,0).

2.1.6 'Tangent Vectors

g—ig = w(Z,y) is nonlinear PDE that can be solved by linearizing it to find the
coordinate system. The tangent vectors to an orbit under a given symmetry are
important to determine the new coordinate system. The tangent vectors to the
orbit at any point (z,y) are described by the tangent vector in the z-direction,
denoted by &(z,y) and the tangent vector in the y-direction, denoted by n(Z, 7).

Therefor,

dzx o
and

dy o

In = n(z, )

At the initial point (z,y), when « equals 0, we have
dx
da

The tangent vectors are useful for finding invariant solution curves. An invariant

dy
04:0’ dov

) — (¢, y) . y) (2.1.25)

a=0

solution curve is always mapped to itself under a symmetry. The points on an
invariant solution curve are mapped either to themselves or other points on the

same curve. Therefore, the orbit of a noninvariant point on an invariant solution
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curve is the solution curve itself. When a solution curve is invariant, this means
that the derivative at the point (z,y) will point in the same direction as the tangent
vectors to the orbit. As « varies, the point is mapped to another point on the same

solution curve, rather than a different solution curve. Therefore,

dy _ n(z,y)
dv &(x,y)

To find the tangent vector field of the group of orbits, we expand z, y and

w(z,y) in Taylor series expansion around o = 0

T=z+a%|,o+0(a?) =z + af(z,y) + O(a?) (2.1.26)
§=2+agleo+0(?) =y +an(z,y) + O0(?) (2.1.27)
. dw (T, )

w(,g) = wry)+a a0 + O(a?)

da
= wlog) +a(wnle)élo) +eonte) ) + Ofe?) (2129

where O(a?) describes the error function for the Taylor series expansions of z,
y, and w(T,y) we ignore terms of a? or higher. For simplicity, £(z,y) will be denoted

merely as £ and n(z,y) as 7.

From equation (2.1.8) we calculate D,z and D,y by using Taylor series expan-

sion of T and ¥ respectively, we have

D, = Dy(z + a& + O(a”))
=1+ a&, +y'a&, + O(a?)
= 1+ a(& +wg) +0(a?)
(2.1.29)
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and

Doy = Di(y + an+ O(a?))
= an, +y' (14 any) + 0(a?)
= w+ a(n. +wny) + O(e?)
(2.1.30)

Substituting (2.1.29) and (2.1.30) into (2.1.8), we get

w + a(ny +wny)
1+ &, + wéy)

= w + (W€ + wyn)
Multiplying by the denominator
W+ a(n +wny) = (1+ a(€ + w6)) (W + alwaé +w,m)
Disregarding terms of o or higher, we obtain
e+ (ny — &o)w — E? — (§w, +1wy) =0 (2.1.31)

This equation is called the linearized symmetry condition for first order differential
equations ODE. This condition is necessary to solve the ODE but sometimes it
is difficult to solve so we can use an appropriate ”"anatzs”, that is, to place some

additional constraints upon & and 7.

The linearized symmetry condition can be rewritten in terms of the reduced
characteristic, ) is defined by Hydon [9] as

Qz,y,y) =n—y¢
but % = w(x,y), we have

Q = U—W(Iay)f

as follows

Qr + w(z,y)Qy — wy(z,y)Q =0 (2.1.32)
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If @ satisfies (2.1.32) then each solution of (2.1.32) corresponds to infinitely many
Lie groups. It follows that

(&n) = (§,Q+ w(z,y))

is a tangent vector field of a one-parameter group, for any function £. If () = 0 then
every solution curve is invariant under that symmetry (trivial symmetry). However,
if not then the nontrivial symmetries can be found from (2.1.32) by using the method

of characteristics. The characteristic equations are

dx dy dQ

= mERn = RRER (2.1.33)
Example 2.8. In example (2.5) the tangent vectors are
{lz,y) ==
and
n(x,y) = =2y
The reduced characteristic is
Qz,y) = 2y — (zy® — %y - %)w (2.1.34)
=~y + % (2.1.35)

z,y) = 0 when y = £, Therefore, the symmetry (2.1.14) acts nontrivially on
Yy z

all the solution curves of (2.1.13) except for y = &% and y = — 2.

2.1.7 Canonical Coordinats

The aim of changing to a different coordinate system is to make a differential equa-
tion easier to solve. If the ODE (2.1.5) has a symmetry of the form (z,y) = (z,y+«),

it can be solved by an integrating technique. However, not all differential equations
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have a symmetry of this form in cartesian coordinates. Therefore, one can change

to a new coordinate system in (r(x,y), s(z,y)) to get a symmetry
T, :(r,s)— (1,8) = (r,s + )

The tangent vectors at (r,s) when o = 0 are

u
o
da|,_q

and
15
as -1
da|,_q

Applying total derivative with respect to a at @ = 0, we obtain

ar|  _drde|  drdy
da|,_,  drda a0 dydal,_,
dr dr
= — — = 2.1.
&z, y) + dyn(fv,y) 0 (2.1.36)
and
da,_,  dx do a0 Adydal,_,
—@5(95 )—i—ﬁ(l’ )=1 (2.1.37)
This equation can be written as
o€ (2, y) +ryn(z,y) =0 (2.1.38)
and
se&(z,y) + syn(z,y) =1 (2.1.39)

Equations (2.1.38) and (2.1.39) are first order linear partial differential equa-
tions for r(x,y) and s(z,y), respectively. They can be solved by the method of
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characteristics. Consider equation (2.1.38) in r(z,y), the solution of (2.1.38) can be

represented as surfaces r(z,y) that satisfy

<TI’T?/’ _1> ' <€(£E,y),77($,y),0> =0

We know that the normal to the surface r(z,y) is given by (r,,7,, —1). Therefore, if
the vector (£(z,y),n(x,y),0) is perpendicular to (r,,r,, —1) at each point then the
vector (&(x,y),n(z,y),0) lies in the tangent plane to the surface r(z,y).

Consider a curve C parameterized by t such that at each point on the curve
C, the vector ({(x(t),y(t)),n(z(t),y(t)),0) is tangent to the curve. The curve C
satisfies the following system of ODEs:

X 0) (1), % = (). u0). 5 = 0

So the characteristic equations for (2.1.38) are

o __ % (2.1.40)
§lay)  n(z,y)
To find the characteristic equations for equation (2.1.39), we have
dx dy ds
— = &@(®),y(t), = = n(z(t),y(1), = =1 (2.1.41)
So
b __ % _ (2.1.42)
§ley)  nlzy) 1

Now consider the function ¢(z,y), the first integral of a differential equation:

dy

- — 2.1.43

P AC) (2.1.43)
The first integral of an ODE (2.1.43) is a nonconstant function ¢(x, y) whose value is
constant on any solution y = y(x) of the ODE (2.1.43). Applying the total derivative

operator to ¢(z,y), we get

Go + f(2,9)0y =0, ¢ # 0 (2.1.44)
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The general solution of (2.1.43) is

¢z, y) = ¢
If we divide Equation (2.1.36) by &(x,y), we obtain

dr(z,y) drn(z,y)
deé(z,y)  dy&(z,y)

SO

N
Ty + —1r, =
dy Y

Comparing this equation with equation (2.1.44), we find that r(x, y) is a first integral
of

dy _nlxy) o
i =tz y) E(x,y) #0 (2.1.45)

Therefore, in order to find r, one can solve Equation (2.1.45). Because r(z,y) is a
first integral of Equation (2.1.45)

r(z,y) = c= ¢(z,y), where c is constant

To find s, one can use equation (2.1.42), we have
/ dy / dx
S = =
n(z,y) &(z,y)

There is a special case when &(z,y) = 0. If £(x,y) = 0 and n(z,y) # 0 then

= [ )

Example 2.9. In example (2.3) the one parameter Lie group is

(7,9) =< & Y > (2.1.46)

l—az’'1—azx

r=x

From equation (2.1.25) the tangent vectors is

x? )
=z

a=0

§(z,y) =

1—oax



2. Preliminaries

28

and

Ty
1—azx

n(z,y) =
So

&z, ) n(z,y)) = (2, zy)

From equation (2.1.45) we substitute £(z,y) and n(z,y) to find r(z,y)

dy _y
de «x
This equation is separable
/ dy / dx
y x
we get
Iny=Inx+ ¢

which simplifies to
y = cx, where ¢ = %

when we solve for ¢, we get

_ _Y
c= T(ZL', y) T
using equation (2.1.42) to find s, we get
de —1
s(z,y) 2 L
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2.1.8 A New Way to Solve Differential Equations

To solve a given ODE, we write the differential equation of the canonical coordinates
in terms r and s. Then, we can set the solution back into cartesian coordinates. To

find %, apply the total derivative operator to get

ds s, +w(x,y)s,y

I 2.1.47
dr 1y +w(z,y)ry ( )

This equation is written in terms of x and y. To write it in terms of r and s solve
the canonical r(z,y) and s(x,y) for z and y then simplify and translate the solution

into the cartesian coordinate.

Example 2.10. In example (2.4), the linearized symmetry condition is
Ne + () — E)w — E? — E(—e y? +€%) —n(2ye ™™ + 1) =0

It is necessary to solve this equation for £ and . We can make an ansatz((trial

solution)) about £ and 1. Suppose £ = 1 and 7 is a function of y only. Therefore,
ny(yPe™ +y+e7) = (=Y’ + ") —n(2ye" +1) =0
Simplifying this equation, we get

e "y(myy +y—2n)+e(my—1)+ny—n=0

we have
nyy+y—2n=0 (2.1.48)
ny—1=0 (2.1.49)
ny—n=0 (2.1.50)

Equation (2.1.49) can be solved by separation of variable, we obtain

n=y
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Now we can find the canonical coordinates r and s. To find r solve equation (2.1.45),

we get
dy_v_,
de 1
we have
Iny =x + ¢y, where c; € R
Therefore,
y = ce’, where c=¢e* € R
So
oy
r = —
eCC

To find s, solve equation (2.1.42), we get

s:/dx:x

Therefore, the canonical coordinates are

Substituting the canonical coordinates into equation (2.1.47)
ds 1
dr — —ye® +e=(yPe~ +y + o)
1
e—2oy2 1 1

Therefore,
ds 1
dr r24+1

1
s= / dr = arctan(r)

rz2 41

- actan( %)
xr = arctan| —
eCE

y = tan(x)e”

we have

and
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2.1.9 Infinitesimal Generator

The symmetry method can be used to solve first order differential equations. Many
higher order differential equations can be reduced in order with the use of infinites-
imal generators. For a one parameter Lie symmetry group T, : (x,y) — (&, %) there
exist tangent vectors £ and 7. The infinitesimal generator for the symmetry is the

partial differential operator

0 0
X:§£+7]a—y

Example 2.11. [9] The following symmetry
(7,9) = (z,e"y)
has an infinitesimal generator that has the tangent vectors:
§(z,y) =0
and
n(z,y) = wye”
So the infinitesimal generator for this symmetry is

0
= ax _—
X = xye By

2.1.10 Infinitesimal Generator in Canonical Coordinates

Let F(u,v) be an arbitrary smooth function. The infinitesimal generator X acts on
F as

XF(u,v) = XF(u(z,y), v(z,y))
By the chain rule, we have

XF(u,v) = &(ug Fy + v Fy) + n(uy Fy + v, Fy)



2. Preliminaries 32

we get

XF(u,v) = Fu(§(uz +nuy)) + Fo(§vr + 1vy)
= (Xu)F, + (Xv)F,

but F(u,v) is arbitrary function. Then the infinitesimal generator in the coordinates

u and v are

0 0
X =(Xu)=— + (Xv)=—
(Xu)5- + (Xv) o~
If (u,v) = (r,s) then
0 0
since Xr = 0 and Xs = 1, we get X = %. The infinitesimal generator can be

extended to equation with more variables. Suppose that G(r, s) is a smooth function

and let
F(r,y) = G(r(z,y),s(z,y)) (2.1.52)
and therefore
F(z,y) = G(r,5) = G(r,s + a)
Applying Taylor’s theorem and (2.1.51), we get

Gys(r, 8) . ad 9

F(z,y) =G(r,s) + Gs(r,s)(s + o — s) + o1 (s+a—s)?+-- = 2 F@G(T’S)
since X = % in the canonical coordinates r and s, we can write
L o
FE) = S X060,)
§=0
from (2.1.52), we get
L
F(z,9) =) FXJF(x,y) (2.1.53)
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Equation (2.1.53) can be written as

F(z,5) =) e X F(x,y)

J=0

since the Taylor series expansion for e” is > > x—f This result can be generalized to
3=0 j!
any number of variables. Suppose that there are L variables, z!,--- , zl, and that

the Lie symmetries are
25(217_,, 7ZL;O[) :ZS—FCYCS(ZI,"' 7ZL)+O(052), s=1,--- L

where (* = %b:o- The infinitesimal generator of the one-parameter Lie group is

0
0z%

X:CS(zl,--- ’zL)

2.1.11 Lie Symmetries of Higher-Order Differential Equations

In this section, we want to describe the method for finding Lie symmetries of general
ordinary differential equations. Consider kth-order ODE of the form
dPy
k — oo (k—1) (p) - J 21.54
yr=wleyyhy oy, P =0 ( )
where w is locally smooth function. A symmetry of (2.1.54) is a diffeomorphism
that maps the set of solutions of the ODE to itself. The action of T" maps smooth

curve to smooth curve.

T: (I7y7y/7"' ay(k)> = (j7gvg/7"' 7g(k)) (2155)
where
dPy
JP == p=1-k 2.1.56
g = p=1 (2.1.56)

This mapping is called the kth prolongation of T. The function §® can be solved

recursively by using the chain rule

—(p—1 —(p—1
ﬂ(p) _ dy(p ) _ ny(p )7 ﬂ(o)

2.1.
dz D,z (2.1.57)

Il
Nl
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where D, is the total derivative with respect to x defined by

0 dyo d*y 0
p -2, %99 299 .
v 8x+dx8y+dx28y’+

So the symmetry condition for the ODE (2.1.54) is

(k)

g = (@59, 5" (2.1.58)

when (2.1.54) holds and where the functions 3 are defined by (2.1.56).

Since the symmetry condition (2.1.57) is nonlinear, Lie symmetry can be obtained

by linearizing (2.1.57) about € = 0.

Example 2.12. [9] The second-order ODE

=0, >0 (2.1.59)
has a symmetry
- Y
=(=Z. 2 2.1.60
@)=Y (2.1.60)
From (2.1.57), we get
dy D,y
"= 2.1.61
dzx D,z ( )
where
dy _ D.y _ Da(%)
= 2 — = L 2.1.62
dz  D,T  D,(2) ( )
but
y,_ —y+ya
D,(=) =
="t
1 -1
D.(=) = — 2.1.63
0=1 (21.63)
Substituting into equation (2.1.61), we obtain
—y+2y’x
y=—"—=y—yz (2.1.64)

2
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Substituting (2.1.64) into (2.1.61), we get

Ay—y'x) + y/a(y—y’w) + y//a(ya—y’m)
y Y’

g// _ Dx(ZJ - y’x) loz%
D,(%) O

/ / /!

— + — T

Y ?_Jl yr _ y" 23
z2

so the symmetry condition is satisfied since " = 0 when y” = 0.

The general solution of the ODE is
Yy =c1x+cy, c1,00 €R.

is mapped by transformation (2.1.60) to the solution

_ Yy ar+c Co _
j=-=——"=c1+—=c1+ 7T
x T T

So this symmetry acts on the set of solution curves by interchange the constant of

integration c; and cs.

The linearized symmetry condition for Lie symmetries is given by the same way

as that for the first-order ODE using a Talyor series expansion. The prolonged Lie

symmetry around o = 0 is

T=x+af+0(?)
j=y+an+0()
g®) =y 4 an® + O(a?), p>1

(2.1.65)

where 7P denotes the tangent vector that corresponds to the pth derivative of .

Substituting (2.1.65) into the symmetry condition (2.1.58), we get

Q(k) _ w(x + Ozf + O(on),y +an+ O(CYZ), .. ’y(k‘—l) + an(k—l) + O(oﬂ))
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Now apply Taylor’s theorem about a = 0, we get

- Ow O Ow 0y Ow gV
A ko G2+ G g ot s o) + 0l

_ Ow Ow Ow _
= w(x»f% e 7y(k 1)) + O[(%f + a_yn +ot ay(k—l)n(k 1)> + O(QZ)

:w<x7y7...

=w(z,y, -, y* )+ a (wxf +wyn+---+ wy<k1>77(k_1)) + O(a?) (2.1.66)
when (2.1.54) holds, we have

which is called the linearized symmetry condition for kth-order ODE when (2.1.58)

holds. The functional 7 can be solved recursively from (2.1.57), for p = 1 we get

J - Day
D,z

(2.1.68)
Calculating D,y by using the Taylor series expansion of 7:

Dyij = Dy(y + an + O(a?))
= an, + 4/ (1 + any) + 0(a?)
=y +a(n. +yn,) +O0(a?)
=9y +aD,n+ 0(a?) (2.1.69)

Calculating D,z by using the Taylor series expansion of Z:

D,t = Dy(x + af + O(a?))
=1+ a&, + ay’é, + 0(a?)
=1+ a(& +9'&) + 0(a?)
=1+ aD,£+0(a?) (2.1.70)

substituting (2.1.69) and (2.1.70) into (2.1.68), we have

Yy +aDn+0(a?)
Y T Iy aD.c 1 0(a?)

(2.1.71)
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multiplying the right hand side by
1—aD,&
1—aD,&
we have

_r (y, + aDz??)(l - anf) + O<a2)
(1+ aD,&)(1 — aD,€) + O(a?)

ignore terms of o or higher so
7 =y +a(Dyn—y'Di&) + O0(a?)
SO
1" = Dyn—y' D¢ (2.1.72)
For p = k — 1, calculating D,5%*~ by using the Taylor series expansion of 7*:

ng(k—l) _ Dx(y(k_l) + Cw7(k—1) + O(a2>)

_ — k—1 k—1
= anl D+ yan D 4y a4y (1 ani ) + 0(e?)
(k1)

=y® + anl 4y e

(k=1)
y /

y
=y + aD,n*Y 1+ 0(a?) (2.1.73)

k—
+y"amy "+ yPani7) + 0(a?)

Calculating D,z by using the Taylor series expansion of Z:

D,z = D,(z + af + O(a?))
=1+ a& +y'ag, + 0(a?)
=1+a( +y'¢&) +0(a?)
=1+ aD,£+ 0(a?) (2.1.74)

substituting (2.1.73) and (2.1.74) into §® = 227 we have

k k—1 2
g — y® + aDan "D + 0(e?) (2.1.75)
14+ aD,€ + O(a?)

multiplying equation (2.1.75) by

1—aD.&
1—aD,£
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we have

(k) _ (Y™ + aDn* D) (1 = aD,€) + O(a?)
ST T 0 v aD)(1 — aDyf) + 0(a?)

ignore terms of o? or higher, we get
g™ =y + a(D* Y =y D,E) + O(a?)
SO
n® = Dy —y® D, ¢ (2.1.76)
To simplify (2.1.67), we introduce the prolonged infinitesimal generator

Definition 2.7. [9] The infinitesimal generator X*) is

where X®) is associated with the tangent vector in the space of variables (x,y,y', - - - ,y(k))

and the coefficient of Oyw) is the O(a®) term in the expansion of §'*.

So the Linearized symmetry for kth-order differential equations can be written

as
X® (y(k) —w(x,y,y', - ,y(k_l))) = 0, when (2.1.54) holds.

Definition 2.8. [9] A point transformation is a type of diffeomorphism of the form

(z,9) = (z(2,y),y(v,y))

Moreover a point symmetry is any point transformation that is also a symmetry.

We restrict our attention to Lie symmetries for which ¢ and 7 depend on =z

and y only which are called Lie point symmetries. To find the form of Lie point



2. Preliminaries 39

symmetries of an ODE (2.1.54) we find ), p = 1,--- |k and then from (2.1.72)
and (2.1.76), we have

" = Dan — ' Dat
=1+ Yy — Y (& — &)
=N+ (y — &) — &) (2.1.78)

To find n® we use n", we have

n® = Dy —y'Dy¢
= Mgz + y'nyz - ylgmac - Syw(y/)Q + y/(nzy + y/nyy - ylgzvy - gyy(y/)Q + y”<77y — &
—26,) = " (& +&Y)

= Nz + 3/,(277yw — &) + (y/)2(77yy — 284y) — fyy(y,)g + (ny — 28 — 3€yy/)y”-
(2.1.79)

The number of terms in 7* increases exponentially with k&, we can use computer
algebra to recommend for the study of high-order ODEs.
Substituting (2.1.78) and (2.1.79) into (?7?), we have

77(2) - n(l)wy’ —we€ — wyn =0
Naw + Y (20ye — Eax) + ()2 (Myy — 28ay) — &y (V) + (ny — 286 — 36,9 )" — (0 + ¥/ (ny
—&) = &)y — wef —wyn =0 (2.1.80)

Equation (2.1.80) is the linearized symmetry condition for second-order ODE. How-
ever, this equation is complicated to solve. It can be decomposed into a system of

PDEs, which are the determining equations for the Lie point symmetries.

Example 2.13. [9] Consider the simplest second-order ODE
y' =0 (2.1.81)
Since 3" = 0 so the linearized symmetry condition is

Nex + y/(277yx — &oz) + (y,)2<77yy — 264y) — gyy(?/)g =0
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This equation can be spilt into a system of four equations, called the determining

equations
Moz = 0 (2.1.82)
2Nye — Eoa =0 (2.1.83)
Nyy — 28ay =0 (2.1.84)
Eyy =0 (2.1.85)

Integrating Equation (2.1.85) with respect to y twice, we get
&(x,y) = A(z)y + B(x) (2.1.86)

for arbitrary functions A and B.
Substitution (2.1.86) into (2.1.84)

Nyy = 2A"(x) (2.1.87)
Integrating (2.1.87) with respect to y, we obtain
ny, = 2A (z)y + C(x) (2.1.88)
Integrating (2.1.87) with respect to y again, we obtain
n(z,y) = A'(2)y* + Cla)y + D(x)
Substituting &(z,y) and n(x,y) into equation (2.1.82) and (2.1.83), we get
New = A" (2)y* + C"(2)y + D" (x) =0 (2.1.89)

2y — &oo = 224" (2)y + C'(7)) — (A"(z)y + B (z)) (2.1.90)
= 34'(z)y + 20"(z) — B'(z) = 0 (2.1.91)
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From equation (2.1.89) and (2.1.90), we obtain

where ¢1, ¢o, c3, ¢4, c5 and cg are constants. The general solution for B(x) is

B'(z) = 2C"(x) = 2¢3

B'(x) = 2c3x + ¢7

B(z) = c32® + o + cg

Substituting A(z), B(x), C(z) and D(zx) into &(z,y) and n(z,y), we get

{(z,y) = A(z)y + B(z)

=cCc1xy + cy + 63x2 + crx + cg

and

n(z,y) = A'(x)y* + C(x)y + D(x)
= cly2 + c3xy + cuy + c5x + cg

So the infinitesimal generator for y” = 0 is

X = (coy + coy + c32° + crw + ¢8)0y + (19 + ey + ey + csT + c6)O0y



3. SYMMETRY METHODS FOR DIFFERENCE EQUATIONS

In this chapter we extend the symmetry method for differential equations to non-
linear difference equations. This method could be used to solve difference equations
after adapting it to this field (see [7], [12]).

A transformation of a difference equation is a symmetry if every solution of the

transformed equation is a solution of the original equation and vice versa.

Example 3.1. Let
To : Uy = Uy = iy, for all « € R — {0},
be a transformation on a linear homogeneous difference equation of order ¢
Qg (M) Untq + g1 (N)Upggo1 + -+ + p(n)u, =0

Then T, is a symmetry of the difference equation for all « € R — {0}, since if
Ui(n),Us(n), ...,U,(n) are linearly independent solutions, then the general solution

1S
q

Uy, = Z c;Ui(n).

=1

The transformation T, maps this solution to
q q
Uy = aZciUi(n) = Z@-Ui(n), where ¢; = ac;.
i=1 i=1

fori=1,2,--- ,q. So u, is a solution of the original equation and vice versa. Thus,

T, is a symmetry for all « € R — {0}.
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Definition 3.1. /6] Let

Loz — Z(x; ), a € (ag, a1),

where ag < 0 and oy > 0, be a transformation, then it’s a one parameter local Lie

group if the following conditions are satisfied

1. T'y s the identity map, that is, * = x when o = 0.
2. Uyl's =Tous, V «, O sufficiently close to 0.
3. Fach & can be represented by a Taylor series in «, so
Z(z;0) = z + af(z) + O(a?).
Example 3.2. [7] Consider the difference equation:
Upr1 — Uy = 0.
and the transformation

Ty : (nyu,) — (R, 0,) = (nu, +@); a€R

T, is a one parameter local Lie group, since

1. Tp is the identity map since

To : (nyup) — (R, 0y,) = (n,uy)

(3.0.1)

(3.0.2)

2. Let T, : (n,up) — (n,u, + «) and Ty : (n,u,) — (n,u, + §) be two transfor-

mations then

T Ts = To(n,u, +9)
= (n,up, + 9 + «)

= La+s



3. Symmetry Methods for Difference Equations 44

3. Each u,, can be represented as a Taylor series in a.

T, is a symmetry for equation (3.0.1) since the solution of (3.0.1) is
Up = C
and every transformation with o # 0 maps each solution,
U, =ctou, =c+«

which can be written as @, = ¢, ¢ = ¢+ «a. So T, is a Lie symmetry.

Note that n is a discrete variable that can’t be changed by an arbitrarily small
amount, so every one parameter local Lie group of symmetries must leave n un-
changed. That is, n = n for all Lie symmetries of (3.0.1). The same argument
applies to all difference equations.

We restrict our attention to Lie symmetries for which «,, depends on n and w,, only,

which are called Lie point symmetries and take the form
n=mn, Up=1u, +aQn,u,)+O0(?), (3.0.3)

where Q(n,u,) is a function of n and wu, that depends on the difference equation
and is called a characteristic of the local Lie group.

If we replace n by n + ¢ in equation (3.0.3) we get
an—l—q = Un+q + aQ(n +4q, un-i—q) + O(Q/Z)a

which is called the prolongation formula for Lie point symmetries.

We want to invest symmetries and to use them to obtain exact solutions for

difference equations.

Now consider the effect of changing variables from (n,u,) to (n,s,), and as
(3.0.3) is a symmetry for each « sufficiently close to zero, we can apply Taylor’s

theorem about a = 0, to obtain

S, = s(n,uy)

= s(n,u, +aQ(n,u,) + 0(a?))
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Now apply Taylor’s theorem about a = 0, we get

_ ds . du,
Sp = s(n,un) + (X(ﬁ)(@) |a:0 +O(062)

= s(n,u,) +as'(n,u,)Q(n,u,) + O(a?).

If we denote the characteristic function with respect to (n, s,) by Q(n, s,) then we

have:

5, = 8, +aQ(n,s,)+0(a?)
= s(n,u,) + as'(n,u,)Q(n,u,) + O(a?).

So we get:

Q(n, s,) = ' (n,u,)Q(n, uy,). (3.0.4)

The coordinate s,, is called the canonical coordinate.

Example 3.3. [7] Consider changing the coordinates from (n,u,) to (n,s,), and
symmetries for s,

(n,5,) = (n,s, + ), a€R.

Then the characteristic with respect to (n,s,) is @(n, s,) = 1, so by (3.0.4),

s'(n,un)Q(n,uy,) =1,

which implies that

du,,
s(n, uy) :/m (3.0.5)

Now, as an example if Q(n,u,) = u, — 1, then the canonical coordinate according

to equation (3.0.5) is

(m.,) / du,, In(u, — 1), |us| > 1
s(n,uy) = =
un =1 (1 — ), Jua| <1

In this example, the map from u, to s, is not injective; it can’t be inverted from s,

to u, except if we specify whether |u,| is greater or less than 1.
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3.1 Lie Symmetries of a Given First-Order Difference Equation

In this section we apply Lie symmetry to first order difference equations. This
method depends on transforming the difference equation to a functional equation
then we transform it to a differential equation.

Consider the first order difference equation of the form
Upt1 = w(N, uy), (3.1.1)

This equation can be solved using a one parameter local Lie group of symmetries.

For any transformation of a difference equation to be a symmetry, the set of
solutions must be mapped to itself so the symmetry condition of equation (3.1.1)

must be satisfied
Upt1 = w(n,u,) when wu,pq =wn,u,). (3.1.2)
From the symmetry condition (3.1.2), we get

w(n,u,) = w(n,i,)
= w(n,u, +aQ(n,u,) + O(a?))
= w(n,uy) + aw' (n,u,)Q(n, u,) + O(a?).

Also, we have

W(N,Up) = Unp1 = Uns1 + aQ(n + 1, un1) + O(a?).

So,

Qn+ 1, uy) = w'(n,u,)Q(n,uy). (3.1.3)
This is called the linearized symmetry condition (LSC') for the given difference equa-
tion (3.1.1).

The linearized symmetry condition (3.1.3) is a linear functional equation that could

be difficult to solve.
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We can find the general solution of the linearized symmetry condition if we
can solve the functional equation. But some functional equations can’t be solved.
However, there is no need to find the general solution of the linearized symmetry
condition, as a single non-zero solution of this equation is sufficient to determine
the general solution of the difference equation. For first order difference equations,
a practical approach is to use an ansatz (trial solution) as a general solution of the
linearized symmetry condition. Many physically important Lie point symmetries

have characteristics of the form:
Q(n,uy) = ti(n)ul + ta(n)u, + tz(n), (3.1.4)

where t1(n), ta(n) and t3(n) are functions of n. By substituting (3.1.4) into the
linearized symmetry condition (3.1.3) and comparing powers of u,, we obtain the
coefficients t1(n), t2(n) and t3(n).

Now, we know how to find a characteristic of first order difference equations,
the remaining question is how can we use a characteristic to determine the general
solution of the difference equation.

Consider the canonical coordinate (3.0.4), and as in example (3.3) let Q(n,u,) = 1,

then
dun

Qn,uy)’

To use a canonical coordinate to simplify or solve a given difference equation, firstly,
we write the difference equation as a difference equation for s, then if we can solve
this equation, it remains to write the solution in terms of the original variables.
This happens only if we can invert the map from u,, to s, . This condition is called

compatibility condition, and s, is called a compatible canonical coordinate.

Example 3.4. [7] Find the general solution
N, + 1
n - - 9 mnj)y Z 2 315
T e D (3.15)

by using Lie point symmetry?

Solution.
dw(n,u,)  n?—1

ou,  (u,+mn)?

W' (n,uy,) =
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then the LSC for equation (3.1.5) is

nuy, + 1 n?—1
1 > - n

Q(n—i— " Up+n (un—l—n)QQ(n’u )

with the ansatz (3.1.4), we get
2 n® —1 2
ti(n+ Dupq +ta(n+ Dupyr +t3(n+1) = m(tl(n)un + to(n)u, + tg(n))
but U, = Zi’f;, SO
t( +1)(nu”“)2+t () ™ 1) = T (1 ()t +a(n)
n n n = —(ti(n)u n)u,+tsz(n

! Up + 1 ? Up+1 (up +m)2 N T2 ’

multiplying by (u,, + n)?, we obtain

n*t (n 4+ Du2 + 2nty(n+ Duy, +t1(n + 1) + nta(n + DuZ + (n? + Ditg(n + Duy, +nto(n + 1)+
ts(n + Du2 + 2nts(n + u, +n’ts(n+1) = (n? — Dt (n)u + (n* — Dita(n)u, + (n* — 1)ts(n)

By comparing the powers of u, we get a system of difference equations:

u? terms Pt (n+ 1)+ nty(n+1) +t3(n+ 1) = (n® — Dty (n)

(3.1.6)
uterms : 2nti(n+ 1) + (n® + Ditg(n + 1) + 2nt3(n + Du, = (n® — 1)ty(n)
(3.1.7)
other terms : t;(n+ 1) +nta(n + 1) +n’t3(n +1) = (n? — 1)t3(n)
(3.1.8)

subtracting (3.1.8) from (3.1.6), we get
tl(n + 1) — t3(n + 1) = t1(n) — t3,

SO

t1(n) —t3(n) = qi, ¢1 is a constant,

adding (3.1.8) to (3.1.6), we get

(n*+ Dti(n+ 1)+ 2nta(n+ 1) + (n* + Dtz(n+ 1) = (n* — 1)(t1(n) + t3(n) (3.1.9)
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subtracting (3.1.7) from (3.1.9) and adding (3.1.7) to (3.1.9), we get respectively

n 4+ 1 (tl(n) —ta(n) + tg(n)),

tiln+1) —to(n+1)+t3(n+1) =

tin+1) +ta(n+1) +t3(n+1) = Z—H(tl(n) +t3(n) + 1),

which implies

t1(n) — ta(n) + ts(n) = (H Z + qu _ n(n2— 1)

=2

42, @2 is a constant,

n—1 .
1—1 2 .
ti(n) +ta+t3(n) = (H H——1> g3 = ng, 3 is a constant.

i=2
We have a linear system of difference equations for the coefficients ¢;(n),t2(n) and

t3(n)7

t1(n) —t3(n) = @
t(n) — ta(n) + ts(n) = @(D
f(n) + ta(n) + ts(n) = ﬁ%

solving the system for the coefficients «,,, 5, and t3(n), hence

hn) = 1 Jrn(n—l) n 1
! - o g P 2n(n — 1)%
n(n—1) 1
¢ = -
() = 1 N n(n —1) N 1
3N = 2(]1 3 a2 on(n — 1)Q3,
so the characteristic
Qn,un) = ti(n)up +ta(n)u, +t3(n)
B 1, 1 nn—1) , n(n—1) n(n—l))
= algun - g) re(Tg - T T
N ( 1 2 1 . 1 )
u U
% 2n(n—1) " n(n—1) 2n(n —1)
—1) 1
_ Lo MY 2 o b1 — (e 1 20+ 1
@ (u; — 1)+ 3 g2 (uy — 2u, + 1) + Il = 1)q;),(un+ U, + 1)
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we suppose q; = 2, ¢ = 0 and ¢3 = 0, Q(n,u,) = u? — 1 for case of computation
there is no canonical coordinate u,, = £1, if uy = £1 then u,, = uy. The appropriate

real-valued canonical coordinate is

1 Up—1 .
n - 2 -
3 In e, lun| < 1,

but us > —1 which implies uy € (—1,1) or (1,00) then w, belong to the same

interval, hence

1 Up—1 .

5111 U1 Uy > 1,
Sy =

1 1—u,

511’1 —1+’Um’ |un| < 1.

The transformation from u, to s, is not injective since s, (u,) = sn(ui), SO S, 1S
not compatible canonical coordinate. To solve the difference equation and get wu,, we
seek an injective transformation to ensure the compatible condition.Therefore the

problem of solving the difference equation splits into two separate parts.

Case 1: if u, > 1, so
1. u,—1
S, = —1In ,
2 u,+1

therefore the map from u,, to s, is injective so the compatibility condition is satisfied

and s, is a compatible coordinate.

Now, consider the difference equation for s,

1 Upy1 — 1 1 U, — 1
Spil — Sp = —ln<—>——1n< )

2 \upa+1/ 2 \u, +1

- %(111(%“ —1) = In(ups+1 + 1) — In(un, — 1) + Inu, + 1)>

_ %(m (r;un_:nl - 1) “In (?”—:nl + 1) — In(u, — 1) + In(u, + 1)>
(D (Ot OD) )

1 n—1
- ()
2 n+1
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then
n—1
1 k—1
o = @+§§:m(k+1>
k=2
n—1
= l111(u2_1)+11n< —k_1>
2 Uy + 1 2 72k+1
- (B (i)
2 us + 1 2 n(n —1)
1 2(uy — 1
= —ln( (s ) >,
2 (ug + 1)n(n — 1)
SO

g (1) = g ()

(ug + D)n(n — 1) + 2(ug — 1)

" (ug+Dn(n —1) = 2(ug — 1)

which implies

case 2: if |u,| < 1, so

1 (1 — un)
Sp, = —1In ,
2 14+ u,
therefore the map from u,, to s, is injective so s,, is a compatible coordinate.
1 —up 1 1—u,
In{— | —=In
1+ ups 2 1+ u,

1
—in
2
1 —
_ —ln(n 1>’
2

Sn+1 — Sn

n+1
then
1S (k-1
Sy, = 82+§z;hl <l{;——|—1)
1 20 -uw)
2\ T+ wnt —1)
SO

o (17i) = 2 (aet o)
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which implies
(ug + D)n(n — 1) +2(ug — 1)

e = (ug + )n(n — 1) —2(ug — 1)’

thus, this value of u, is valid for all u, > —1. The general solution happens to

include the solutions on which Q(n,u,) = 0. [

3.2 Lie Symmetries of a Given Higher-Order Difference Equation

Consider the ordinary difference equation of order ¢ of the form

ow
Untq = ("J(n? Upy Un1, - 7un+qfl); 87 # 0 (3'2'1>

where w is locally smooth function.
Since for any transformation of a difference equation to be a symmetry, the set of
solutions must be mapped to itself so the symmetry condition of equation (3.2.1)

must be satisfied
Unptq = W(N, Up, Unt1, -+ 5 Untqo1) When (3.2.1) holds (3.2.2)
We restrict our attention to Lie symmetries of the form
N=n, Unpig= Unrq+ aQ(n+ q upy)+ O0(a?) (3.2.3)
Substituting this equation into (3.2.2), we get

W(My Upyy Ups 1+ Unggo1) = W(N, Up + QN Up )y Upy1 + QN+ 1, Upiq), -+ -,

Upig-1 +aQ(n+q—1,Up1q-1))
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Finding Taylor series of the right hand side about o = 0, we get

Ow Ouy,
o0u,, Ou

Ow 8'L_l/n+1

W(ﬁ,ﬂn,ﬂn+1,"' 7an+q—1) ZW(TL,U”,U”+1,"' aun+q—l) "'04( Bl 9
a=0 Un+1 o «

Ow 8ﬂn+q_1

=0

4+ + 0(a?)
Qinig-1 O a:0> (
( )+ o 2200, w) + =2 Q0+ 1, uns)
- ny Un+1, 5 Undq— (67 n, up n , U
WM, Up, Upt1 +q—1 o, Dttt +1
Oow
oot ———Q(n+q—1,uniq1) | + O0(a?)
aun—f—q—l
(3.2.4)
also we have
W(Thy Uy Urg 1, 5 Upgo1) = Uptg = WM, Uny Uni1, 5 Unpg1) + QN+ ¢, Uniq) + O(a®)
(3.2.5)

From equation (3.2.4) and (3.2.5), we get the linearized symmetry condition (LSC)
for qth order difference equations

Ow
Qn+ Lupyr) + -+ 2——Qn+q— 1L upig1)
aun—i—q—l

Oow
QN+ ¢q,Uniq) = 8_unQ(n’ Up) + i

To simplify this formula, we introduce the definition of the infinitesimal generator.

Definition 3.2. The infinitesimal generator X is

[y

X = (S*Q(n, uy))

0

0

8un—f—k:

i

where S* is the forward shift operator defined as follows
S:n—=n+1; SPu, = tnik
and q is the order of the difference equation.

So the Linearized symmetry condition for gth order difference equations can be

written as

SFQ — Xw =0 (3.2.6)
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which is a linear functional equation for the characteristics Q(n,u,). However,
functional equation are generally hard to solve. Lie symmetries are diffeomorphism,
that is, Q(n,u,) is a smooth function, so the linearized symmetry condition can be
solved by the method of differential elimination.

To transform equation (3.2.6) from a functional equation to a differential equation,

we use the following steps:

e Firstly, in order to obtain an ODE for Q(n,u,) we apply appropriate differ-
ential operators to reduce the number of unknown functions then differentiate
the LSC with respect to suitable independent variable and we may need to

differentiate again.

e Secondly, from previous step we obtain an ordinary differential equation, which
can be split by gathering together all terms with the same dependence and we
solve it if possible, and obtain Q(n,u,). To find the coefficients of the terms
of Q(n,u,), we plug it in the equations that we obtained in the previous steps
which can be split into a system of linear difference equations by collecting all

terms with the same dependence.

e After finding the characteristics Q(n,u,), we want to find the invariant v,
defined as

Definition 3.3. A function v, is invariant under the Lie group of transfor-

q—1
mations T, if Xv, =0, where X = kz_:(]SkQ(n,un)m.
For equation (3.2.1), we suppose that the characteristic Q(n,u,) is known,

then the invariant v,, can be found by solving the partial differential equation

ﬂ ot Sq_lQ(n,un)ﬂ =0,

ov,,
Xv, = Q(n,u,)=— + SQ(n,un)au » T
n n+q—

ouy,

and the general technique to solve the partial differential equations of this form
is known as the method of characteristics and it is useful for finding analytic

solutions.
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To solve these equations, we use

du, Aty 41 dtp g1 dvy,
Rl in ' bk SR 3.2.7
SIQ(mwn) 0 (3:27)

Q(n,uy,) - SQ(n,u,)

e We want to invest symmetries to reduce the order of difference equations. We

find a compatible canonical coordinate s,,, which reduces the order by one.

e Finally, we obtain u, from the canonical coordinate.

Example 3.5. [13] We investigate symmetries and solutions of the second-order

difference equation

n+ UpUp41

Upypo = ——nHL (3.2.8)

un—i—l

where the initial values ug and u; are arbitrary nonzero real numbers. We want to

find the solution of equation (3.2.8) by using Lie symmetries.

Solution. The linearized symmetry condition LSC' to equation (3.2.8) is

ow ow
_ _ 1 —
Q<n+ 2,'11)) aunQ(n7 Un) aun+1Q(n+ 7un+1) 07
but 5
w
ou, L
and
ow -n

)
aun+1 Upt1

Y

so the LSC is

Qn + 2,w) — Q(n,un) + uf Q(n+1,upsy) = 0. (3.2.9)
n+1

We apply the differential operator L to transform this functional equation to differ-

ential equation, given by
9 upyy 0

I -
ou, n Oupil
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to equation (3.2.9) to get

unJrl

ai (Q(n + 27 w) - Q(n7 un) + Qn Q(n + 17 unJrl)) +

n Oupt1 Uy

2
(w—a )(Q(n+2,w) — Qn,up) + — Q(n+1>“n+1)> =0,

but

n —2n
2 Q(n+ 17un+1>> - 3 Q/(n+17un+1) + 3 Q(n+ 17“%—0—1)7
n+1 unJrl

this leads to

Q'(n+1,ups1) — Qn+1,uy41) — Q' (n,u,) =0, (3.2.10)

Up+1

now, we differentiate this equation with respect to u,, keeping u,, 1 fixed. As a result
we obtain the ODFE

—Q”(n, un) = 07

whose solution is given by

Q(n,u,) = a(n)u, + S(n). (3.2.11)
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Next we substitute (3.2.11) into (3.2.10), we get

a(n+1) — (a(n+ Duper + B(n+1)) —a(n) =0,

un+1

the equation can be split by gathering together all terms with the same dependence

upon Up41

—a(n+1) —a(n) — B(n+1)=0.

Un41
Now, we compare the two sides of the last equation, to obtain

—a(n+1) —a(n) =0,

which is a first order linear difference equation whose general solution is

where c is a constant. We have also
B(n+1) =0 which implies S(n) = 0.
S0
Q(n,u,) = (—1)"u,.
We want to find the invariant using equation (3.2.7),

dun dun+1 _d/Un
) TR ) e e

(_1)nun )7L+1un+1

Taking the first ( duy, ) and second (%) invariants, we get

In|u,| + ¢ = —In|u,yq| which implies — ¢* = In |up 1|,

where ¢* € R, so

ok
t1 = UpU,y where t; =e |

also, we have
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which implies that
Vy, = t, such that ¢t = f(tl)a

where t; and ¢ are constants.
We choose f(t1) = t1, therefore

Up = UpUpy- (3.2.12)
Applying the shift operator to v,, yields
Svn = Un+1 = Up+1Un+2
<Tl + unun+1>
= Upy1| —
Un+1
= N+ UpUpt

= N+ Uy, (3.2.13)

So we have the equation

Un41 — Un =N,

which is a first order linear difference equation whose solution is given by

n—1
Uy = Vgt Z k
k=0

-1
— o+ w (3.2.14)
Then by equations (3.2.12) and (3.2.14) we have
(n—1)n
Up = UpUpy1 = Vo + —F—,
2
Solving for u,,; we obtain
-1
g = 2 4 (A= Ln (3.2.15)

Up, 2u,,
The order of Equation (3.2.8) has been reduced by one.

To solve equation (3.2.15) we need to obtain a canonical coordinate,

_/ du,,
) G,

= (—1)"In|u,.
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SO S,41 — Sy, is an invariant. Consequently,

Sni1 — Sn D™ n [tggq] — (—1)" In |u,|

)™ n |u,|
(n—1)n

)

D)™™ In |ty g1 |
)
) =t

(=
(—
(-
(—=1)" ! 1n %] vy + (3.2.16)

The general solution of (3.2.16) is

Sn = 80+Z(—1)k+1lnlvk|

k(k—1)

= lInjug| + Z D In %] uguy + 7

but s, = (—1)"In |u,|, so the general solution of (3.2.8)

n—1
k(k—1
U, = exp (( "1In Jug| + Z T n x| wguy + %)
k=0



4. SOLUTION AND BEHAVIOR OF A RATIONAL
DIFFERENCE EQUATION

4.1 Exact Solution of the Difference Equation ¢ = 57— - B =

We investigate symmetries and solutions of the sixth-order difference equation

Up
e — 4.1.1
{n+6 An + Bnunun+3 “ ( )

where the initial values ug, uy, - - - ,us are arbitrary nonzero real numbers. We want

to find the solution of equation (4.1.1) by using Lie symmetries.

The linearized symmetry condition (LSC) to equation (4.1.1) is

Oow Oow Oow
Qn+6,w) — D0 Qn,u,) — m@(n + 1, upq1) — 0 +2Q(n + 2, Upy2)
_ Q(n + 3, Ups3) — Ow Q(n+4, Upyq) — Ow Q(n+5,upg5) =0
au”_'—g y Un+43 8u”+4 y Un+4+4 8Un+5 y Un+45) —
but

ow  Aw?

ouy, u?
ow

aun—i—l B
Oow

=0

aUn—i—2

Ow _ B2

aUn—i—?»
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ow
=0
aun—|-4
ow
=0
aun-i—S
So the LSC is given by
Anw? 9
Q(n+6,w) — Q(n,u,) + Byw Q(n+ 3,uy3) =0 (4.1.2)

2
Un

We apply the differential operator L to transform this functional equation to differ-

ential equation, given by

a aunJrB a
L —=
where
Qunys  Ow/Ouy,
Oy Ow/Oupys
JR— An
 Byu?
SO
0 A, O
L _
to get
0 A, w?
A, <Q(n +6,w) — w2 Q(n,uy,) + BHWQQ(n + 3, un+3)>
A, 0 A, w? )
+ B s <Q(n +6,w) — " Q(n,u,) + Bw?Q(n + 3, un+3)> —0
but
0
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0

o (Ba QU+ 3, ) = 0
0 (Q(n+6,w)) =0

aun+3 , -
0 A, w?

ou +3( u? Q(n,w)) -
9 :

ou 5 (an2Q<n + 37 un+3)> = an2Q (n + 37 un+3>
n+

this leads to
A, w? 2A,w> Apw?
- u% Ql(nv un) + U—%Q<n7 un) + u% Q (n + 37un+3) =0

multiplying this equation by —#%ﬂ, we get

Q,02) = Q) = Q12+ 3, py3) = 0 (4.1.3

n
now, we differentiate equation (4.1.3) with respect to u, keeping u,3 fixed, we
obtain the ODE

Q//(n, un) — ui@/(yl, un) + U%Q(n7 Un) =0

n n

multiplying by u?, we get
u2Q" (n,un) — 2u, Q' (n, uy) + 2Q(n, uy) = 0
which is a Cauchy differential equation, whose solution is given by
Q(n,uy) = auu + Bauy, (4.1.4)

for some arbitrary functions « and S of n. We substitute equation (4.1.4) into
(4.1.3), we get

_2an+3un+3 - (ﬁn + Bn-l—?)) =0

this equation can be spilt by gathering together all terms with the same dependence

upon Up43

1:Bn+ﬁn+3:o

Unp+3 : 206n+3 =0
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we have
Qni3 = 0 which implies o, =0

we have also

ﬁn + Bn+3 =0

which is a third order linear difference equation whose general solution is

Bn = (—1)"01—1— (% + ?Z) nCQ‘F(% - ?Z) an

for some arbitrary constants c;, j = 1,2,3. So we get three characteristics and their

corresponding generators as follows:

X1 = (—1)"u,0tp + (—1)" M1 0tn 1 + (1) 2y 00U 0 + (—1)" Uy 30U 13

+ (=1t aOngs + (—1)" U y50Up s

1 3 ' n 1 3 . n+1 1 3 ' n+2
Xg = (§ + \/7_Z> Unaun+ <§ + \/T_Z) un+laun+1+ (5 + \/7_71) un+28un+2

1 3\ " 1 3\ "+ 1 3\ "+
+ (— + £Z> Up 430U 43+ (— + £Z> Up 440U 2+ (— + £2> Up450Up 45

2 2 2 2 2 2

1 3 n 1 3 n+1 1 3 n+2
X3 :<— — \/—_Z) unaun—i— (— - £Z> ’U/n+1aun+1+(— — \/—_Z) un+28un+2

2 2 2 2 2 2
1 3\ 1 V/3\" 1 3\
+ (5 + 71) Up 430U, 43+ (5 — 71) Un 44 OUp 44+ (5 - 7%) Up 450U 45

Now, utilizing X, we introduce the canonical coordinate

S, :/# = (—1)"lnu,

—1)"u,

Now, we want to find the invariant using equation (3.2.7) we obtain

du,, Aty 41 Ay, duy,

M Dy () Uy 0
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Taking the first ( duy, ) and the second (dun—“) invariants, we get

(=D)ru (=) lupga
Inw, + ¢ = —Inwu, 1 which implies — ¢; = Inu,upiq
where ¢; € R, so

Ty = upyy1, where Ty = e

(=D)"un —1)" 2un g

Taking the first ( dug, ) and the third ((CIA) invariants, we get

Un+2
Unp,

Inw, + ¢y = Inu,. o which implies co = In

where ¢ € R, so

Up+2
T, = , where Ty, = e*

Unp

Taking the first ((‘f;:;un) and the fourth <(1‘;?+3"+3> invariants, we get

Inw, + c3 = —Inu, 3 which implies — c3 = Inu,u, 3
where c3 € R, so

T5 = upyy3, where Ty =e %

(=1)"un (=)™t 4a

Taking the first ( dis, ) and the fifth (d“”—“) invariants, we get

Un+4

Inw, + ¢4 = Inu,. 4 which implies cy = In
un

where ¢4 € R, so

Up+4
T, = , where T, = e*

Unp
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Taking the first ( duy, n) and the sixth (%) invariants, we get

(=1)"u D" Uy
Inw, + c5 = —Inu,y 5 which implies — c5 = Inu,u, s
where c5 € R, so

C5

T5 = upu,ys, where Ts = e~

Taking the second (d""—“) and the third <_dff++2> invariants, we get
+1 (1) 2un 2

(_1)n+1un
Inu, 1 + cg = — Inuyo which implies — cg = N Uy Upio

where cg € R, so

Ts = Upi1Upio, where Ty =e ¢

—1)nHlup g (=) H3upyg

Taking the second ((d&) and the fourth (du"—”) invariants, we
get

Un+3

Inu, 1 + 7 = Inw, 3 which implies ¢; = In
Up+1

where ¢; € R, so

T = Upi3Uye1, where Ty = e

Taking the second <(dA> and the fifth Qf;ﬁ—j;ﬁ) invariants, we get

,1)n+1un+l

Inw,1 + cg = —Inu, g which implies — cg = In Uy Uiy
where cg € R, so

Ts = Upi1Uprq, where Ty =e @
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Taking the second <(dA) and the sixth (&55) invariants, we get

)" lup g (1) FPup
. . . Unp+5
Inu,1 + cg = Inu, 5 which implies cg = In
Un+1

where ¢y € R, so

Un+5
Ty = , where Ty = e®

Un+1

—1)"H2up 40 —1)nH3up 43

Taking the third ((d%) and the fourth ((dA) invariants, we get

Inu,io + 1o = —Inu,y 3 which itmplies — c19 = In U0ty is

where ¢1p € R, so

Tio = UpsoUnys, where Ty = e 0

Taking the third <M> and the fifth (%) invariants, we get

(=1)"F 2up o

Un+4

Inwu, o + c11 = Inwu, 4 which implies ¢;; = In
Up+2

where ¢ € R, so

Up+4
Tll -

, where Ti; = e
Up+2

Taking the third (M) and the sixth ((_ldA) invariants, we get

(1) 2uny2 )" ys

Inwu, o + c1o = —Inu,y 5 which implies — c1o = In Uy oty s
where ¢12 € R, so

Tio = UpioUyys, where Tig = e 2
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Taking the fourth ((1‘;;1%) and the fifth (%) invariants, we get

,1)n+4un+4

Inwu, 3+ c13 = —Inu,y g which implies — c13 = I Uy 31y
where c13 € R, so

Ti3 = Upy3Upig, where Ti3 =e 3

(—=1)n+3u, (=) uy,

Taking the fourth (%3%) and the sixth <%55> invariants, we get

Un+5

Inw,y3 + c14 = Inwu, 5 which implies c14 = In
Un+3

where c14 € R, so

Un+5

T4 = , where Ty = e

Un+3

Taking the fifth (MA) and the sixth <(1‘)1:+3M> invariants, we get

,1)n+4un+4

Inwu, 3+ c15 = —Inu,y5 which implies — c15 = In Uy gUpys
where c15 € R, so
—C15

Ti5 = UpsgUnys, where Tis =e

also, we have

which implies that
vy =T such that T = f(T1,Ts,--- ,T15)

where T;,2 =1,--- ,15 and T are constants.
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68

we choose f(T1,Ty, -+ ,T15) = T3 = upty,y3, therefore
Un = UnUp+3
Apply the shift operator to v, yields

3
S Up = Un43 = Un+3Un+6
o Up43Un
An + Bnunun+3
An + ann

which is a third order difference equation, which we solve to find v,,. From the above

equation we have

1 1
Un+3 Un,
Let A\, = i we obtain

>\n+3 = An)\n + B,

This equation can be solved recursively. Let Ay, A\; and Ay be given, then

)\3 - Ao)\o + BO
)\4 - Al)\l + Bl
As = Asdg + By

X = ApAsg + AsBy + Bs
A = A Ag\ + AyBy + By
As = AsAs Ay + A5 By + By
Ao = AgAszAcho + AsAs By + A¢Bs + Bs
Ao = A1 Ay AN + AyA7 By + A7 By + By
A1 = AsAs Agho + A5 Ag By + AgBs + Bs

So the general solution given by

n—1 n—1 n—1
)\3n+m — )\m H A3i1+m + Z (deg H A3m>a m = 07 17 2

11=0 19=0 m=i2+1
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but v,, = ﬁ

1 1

A n+m
ot )\ Hu =0 A321+m + Zzz 0 (B3Z2 Hm ia+1 ASm)

SO

m=0,1,2

we have
Um
U3n+m =
Hzl =0 A311+m +Um Zzz =0 (3322 Hm ig+1 A3m)
UmUm+-3

_ , m=0,1,2 (4.1.5)
H“ =0 A311+m + U Umn4-3 212 =0 <B312 Hm io+1 ABm)

The canonical coordinate s,

S = /% = (-1)"Inu,

—1)ru,
SO S,43 — S, is an invariant. Consequently,
Sni3 — Sp = (=1)" P Inuys — (=1)" Inwu,
= —(—1)"(Inupss + Inwu,)

= (—1)" " (In U431y

= (=)™ (Inv,)

whose general solution is given by

1 3 3n+m _1 3 3n+m n—1 .
o CO*(? * é) Cl*(? B %) ot st 31 v

where m = 0,1, 2. From s, = (—1)"Inu, we obtain
U3n4+m = €XP ((_1)3n+m83n+m)

1 \/g 3n+m 1 \/g 3n+m
= €Xp ((_1)3n+m00 + (= 1)3n+m( 5 + 72) e+ (=1)% <7 - 72) C2

n—1
+ (1) 4 (=1 C(=1)F In v32-+m>, m=0,1,2.
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To find ¢y, ¢; and ¢y we substitute n = 0 and m = 0, 1, 2, we obtain

CQ+C1+02:0
-1 V3 -1 V3
Co+<7 + 72) Cl—i—(T — 72) Cy = 0
—1 2 ~1 V3)\°
Co+<7+72) Cl+(7_72) co =10

from this equations we get

C():Cl:Cg:O

So the general solution of equation

Usngpm = exp((_1)3n+msm + (_1>3n+m Z(_l)iJrl In 7)31+m>

m

n—1
= D" exp ( Z(—1)3n+m+i+l In U3i+m>a m=0,1,2

=0
n—1
— Usgl)n H Uéi_j7)711+m+l+17 m— 0, 17 9 (4‘1‘6)
i=0

Substituting m = 0, 1,2 in equation (4.1.5), we obtain

UoUs3
U3p =
H“ =0 A37,1 + UpU3 ZZQ =0 (B?ng Hm =ig+1 A3m)

UUy

Usn+1 =

H“ 0 Asgii 1+ Urug Z,2 —0 (-837,2 Hm iot1 A3m)

UaUs

Usn+2 =

H“ 0 Asii 2 + Usus Zm —0 <B312 Hm i+l A3m)
(4.1.7)

Substituting m = 0, 1,2 in equation (4.1.6), we get
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n—1
(=1 (—pntit2
U3n+1 = Uy H U3it1
=0

n—1
G (=1)ntits
Usnt2 = Uy H Usit2
i=0

Substituting n = 1,2, ---, we obtain

uz = Uy 1110
Uy = ul_lvl_ !
o1
Us = Ug V2
U3
Ug = Ug—
Vo
U1
U7 = U1—
V4
Us
Ug = Ug—
V2
Ve
Ug = Uz—
U3
(o
Up = Us—
U7
Ug
Uyl = Us—
Us
So we can write the solution as
n—1 v
6k+3
Uen = UQ H y
oo Utk
n—1
. Vbk+1
Upn+1 = U1 —v
g V6k+4
n—1
. V6k+5
Upn+2 = U2 "
oo V6k+2
n—1
o V6k+6
Uen43 = U3 v
6k+3
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n—1
- Ugk+4
Upn+4 = Ug H v
oo V6k+T
n—1
. UBk+8
Uen+5 = Us v
oo V6k+5

From equations (4.1.7), we get

Uen =

Un+1

Un+2

U6n+3

UGn+4

U6n+5

2k 2%k
n—1 Hil:[) A3i1 + upu3 Zizzo (B?)ig Hmﬂﬁl A3m)

Ug
k=0 H2k 1 As;i, + ugus 21 —0 <Bgn2 Hif;ilﬁl A3m>
n—1 H% y Asiy + urug 21221:01 <B3i2 Hzf:_ilg—&—l A3m)
=u
1 k=0 Hi A3Z1 + uruy Zz =0 (3312 m—12+1 A3m)
n—1 HZQI A?nl + U2Us EZQ =0 (3312 m=ig+1 A3m)
= U
2 k=0 szlkf ) Az, + ugus ZZQ =0 (B?nz 72:::_1'12+1 m)
n—1 H?lkjl Az, + ugus Z?f+()1 (B3zz ifiilg—&—l m)
=1
3 k=0 Hi Az, + ugus 212 =0 (3312 m=iz+1 ASM)
n—1 Hfl A321 + U Uy Zzz =0 (B-?)’LQ m=is+1 A3m)
=u
4 k=0 H2k+1 Agzl + UpUy 2125:()1 (ng 72::1'12—&-1 Agm)
- H2k+1 Asi, + usus E?fiol (ng if;lﬁl A3m>
= Us

k=0 HZF Asi, + ugus ZZQ O(Bgﬂ2 a1 A3m)
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4.2 Exact Solution Of The Difference Equation

Un
Ay F O UnUp4-2Un+4Un+6

Up+8 =

We investigate symmetries and solutions of the of eighth-order difference equation

Un
Upt8 = =w 4.2.1
i An + Bnunun+2un+4un+6 ( )

where the initial values ug, uy, - -+ ,u7 are arbitrary nonzero real numbers. We want

to find the solution of equation (4.2.1) by using Lie symmetries.

The linearized symmetry condition (LSC) to equation (4.2.1) is

Oow Oow Oow Oow
ou Q(naun)_ Q<n+17un+1>_ Q(n+27un+2)_

Oow

Q(n+8,w>_ Q(n+3’un+3)

8un—‘rS

Q(n+T7,uny7) =0

Qg Ol y2

ow ow
8un+4 Q(n+47 un+4) - aun+5 Q(?’L+5, un+5) - 5Un+6 Q(n+67 un+6) - aun+7

but
ow  A,w?

ouy, u?
Ow
Oy i1
Ow
O 42

Oow

aUn—i—?»

ow
aUn—i—4

Oow

aUn—i—5

Oow

aun—i—G

Oow

aun—i—?

=0

2
= _Bng Un+4Un+6

2
= _Bng Unp42Un+6

=0

2
= _Bna Un+2Un+4

=0
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So the LSC is given by

2

Q(n+8,w) — A

n

Q(n,up) + Buwtyratn16Q(n 4 2, Upi2) + Buw Unyotlny6Q(n 4 4, Upya)

+ Bt 12U 44Q(n + 6, Up16) = 0
(4.2.2)

We apply the differential operator L to transform this functional equation to differ-

ential equation, given by

I_ 0 + OUpio O
ou,, Ouy, OUpyo
where
QMpyo B Ow/Ou,,
Oup, 0w/ OUp s
B Bnu%un+4un+6
SO
L0 A, )
B aun Bnu%un+4un+6 8un—&-S
to get

% <Q(n + 87 CU) - AZ;}Q Q(na un) + an2un+4un+6Q(n + 27 un+2) + an2un+2un+6

Q1 44, Up1a) + Buw?tny2tn14Q(n + 6, un+6)> + 2o - (Q(” +8,w)

Bnu%un+4un+6 aun+2

AZ%:)Q Q(TL, un) + an2un+4un+6Q(n + 27 Un+2) + anzun-i-?un-‘rGQ(n + 47 un+4)

+an2un+2un+4Q(n + 67 un+6)) =0

but
0
5, (@ +8w))=0
0 [ A,w? Apw? 2A,w?
ou ( u2 Q(”v“ﬂ)) T2 Q' (n,up) — w3 Q(n, uy)
0

ou (an2un+4un+6Q(n + 2, Un+2)) =0
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0
ou (an2un+2un+6Q(n + 4a un+4>> =0
0
au (anzun+2un+4Q<n + 67 un+6>> =0
0
o (QU-+ 8,)) =0
0 A, w?
=N
0
" (Bt 4 4n6Q (1 + 2, Up12)) = Bpw tniatin16Q' (0 + 2, Upy2)
n+2
0
W(BnWQUn—i—Zun-i-ﬁQ(n + 4, Unya)) = an2un+6Q(n + 4, Unya)
n+2
0
W(an2un+2un+4Q(n + 67 un—‘rﬁ)) = an2un+4Q(n + 67 un-i—ﬁ)
n+2

this implies

A, w? 2A,w? A, w? A, w?
- Q' (n,u,) + Q(n,uy,) + — Q'(n+ 2, Upny2) T Q(n+ 4, upyq)
n n n nYn+4
A, w?

uiun%Q(n + 67 un+6) =0

multiplying this equation by —AU—’ZQ, we obtain

Q' (n.uy,) — %Q(n, Up) — Q' (N + 2, Upi2) — Q(n+4,Upsq) —

Q(TL + 67 un+6) =0
n Un+4 Un+6

(4.2.3)

now, we differentiate equation (4.2.3) with respect to u, keeping w, 2, u,+4 and

un ¢ fixed, we get

Q) — Q0 0,) + Q) = 0

multiplying by u?, we get
uiQ”(n, Up) — 2, Q' (1, up) +2Q(n, u,) =0

which is Euler differential equation, whose solution is given by

Q(n, un) = ayul, + Butin (4.2.4)
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for some arbitrary function a and g of n. We substitute equation (4.2.4) into (4.2.3),

we get
B + 200 12Un2 + Buga + npatinga + Buga + Qpyelings + Buge = 0
4
1:Bn+ Brte + Buga + Buye =0
Un+2 . 20ln+2 = 0
Un44 - Oppg = 0
( Un+6 « Bnt6 = 0
we have

i, Upyg and o, 16 = 0 which implies o, =0
we have also

Bn + Brio + Bnaa + Bnic =0

which is sixth order linear difference equation whose general solution is

1 1 \" " 1 1 \" 1 1 \"
N
V2 V2 V2 V2 V2 V2 V2 V2

+ (i) s + (—1i)"ce
for some arbitrary constants ¢;, j = 1,--- ,6. So we get six characteristics and their

corresponding generators are as follows:

I R 1
i) U, Oy, + (\/_—1-72) un+18un+1+(\/_ \/_

+2
)n Up+2 aun—&-Q

(5

1 1 1 1
+(E+E ) un+38un+3+<\/— \/— ) un+4au”+4+(\/_ \/_ ) un+58un+5
1 1. 1.
+ (7 + Ez)" un+60un+6 + (ﬁ + Ez)n 7un+7aun+7
1 1 1 . 1 1
Xy = (E - 7 i) ", Ouy, + (E - ﬁ@) 1Oy + (\/— \/— 0)" 90U
1 1, 1 1 ., L,
+(E—EZ) +3un+3aun+3+(7_7 i) +4un+4aun+4+(\/— \/— i) Uy 50U 5
1 1 1
n+7un+7aun+7

(\/— \/— ) un+6aun+6 + (\/— \/— )
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1 1

1 1
\/5 \/5 \/— \/— ) un+1 aun+1+( \/— \/— ) un+28un+2

1 1 . 1
+<_E+%Z)n+3un+38un+3+( \/— \/— )n+4un+4aun+4+( \/— \/— )" Uy 50U 15
+ (= \/— \/— )n+6un+68un+6 + (= \/— \}— )" Uy 70U 17
1 1 1 1
<_ﬁ_7 1) U O+ (— \/§ \/5 ) Un+18Un+1+( \/5 \/§ )n+2un+28un+2
1 1 1 1
+<_E_7 )n+3un+38un+3+( \/— \/— )n+4un+4aun+4+< \/— \/— )n+5un+58un+5
1 1 1 1 .
+ (= \/— \/— )"0y, 60U 16 + (—E - Ez)" "7 07

X5 = (i)"unaun—i— (Z)n+lun+1aun+1 + (@')”+2un+28un+2 + (i)n+3un+3aun+3+ (i)n+4un+4
Opya + ( ) un+5aun+5 + ( ) Jr6un+68un+6 + (i)n+7un+7aun+7
Xo = (=) un Ot +(—=1)" Mty 10Un 1+ (—1) "t 20Un 2+ (—1) Pt 30Up 45 +(—1) "

n+5

un+4aun+4 + (_2) un+58un+5 + <_Z)n+ un+6aun+6 + <_Z)n+ un+7aun+7

Now, utilizing X, we introduce the canonical coordinate

/ du, ( 1 1 )1
Sp = , =(—=— —=9)"1Inu,
(\/Li + \%Z)”un V2 V2

Now, we want to find the invariant using equation (3.2.7) we obtain

dun B Aty 41 B B Aty 7 _dv,
(\/~ + f )nun (\/Lﬁ + \%Z’)"Hunﬂ (\/Lﬁ + \/iii)"+7un+7 0

We proceed as in the previous equation to find the invariant. We get 28 constants

e 1 % dun+4 . ;-
ty,ta, -+ ,tog. Using the first ((\}ﬁ\}gi)”un) and the fifth ((\}#I )n+4u”+4) invari

ants
Inw, + ¢4 = —Inu, g which implies — ¢y = Inu,tpyiq
where ¢4 € R, so

ty = UpUpsg, where ty =e
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also, we have
du,, _ dvy,
1 1 -0
(75 —f— ﬁl)n’un O
which implies that
v, =t such that t = f(ty,ta, -+ ,tog)
where t;,7 =1,---,28 and t are constants.
we choose f(t1,ta, - ,tog) =ty = UpUpta, therefore
Up = UnUn+4
Apply the shift operator to v, yields
Svn = Un4+1 = Up4+1Un45
S2Un = Uny2 = Up2Unie
ngn = Un4+3 = Up43Un47
S4,Un = Un+4q = Up44Un4sg
o Up4+4Unp
An + Bnunun+2un+4un+6
An + annvn+2
So we have the equation:
Un,
. =
e An + annvn+2
= 6(”7 Uny Un41, Un4-2, Un+3) (425)

which is a fourth order difference equation, and we can use symmetry method to

solve it. The (LSC) is:

_ 00 - 00 00 -

Q(n+47 Un+4) - aTQ(”7vn) - Q(TL—F 17Un+1> -
00

avn—f—?)

QU1 Oyt

Q(n + 27 Un+2)

Q(n + 37 Un+3) =0
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but
0 _ A
ov, 12
00
aUn—i—l =0
00
= —B,0°
avn—i—? "
00
avn—i—?) =0
So the LSC is given by
_ A 62 -
Q(n+4,vp44) — U—QQ(n, Un) + B0 Q(n + 3,v,43) =0 (4.2.6)

n

We apply the differential operator L to transform this functional equation to differ-

ential equation, given by

0 OUpio 0O
L p—
v, + v, OUpio
where
3vn+2 _ (9«9/8vn
o, 00/0v,, 19
- B2
SO
0 A, 0
L =
ov,, + Bnv2 0vy, 19
to get

o [ - A,0% - 24 Ay 0
v (Q(n +4,0) — 3 Q(n,v,) + Bo0°Q(n + 3, Un+3)) + Boo? Ounea <
_ An0?% -

Q(n+4,0) — 7 Q(n,v,) + B0?Q(n + 3,vn+3)> =0

n
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but
0 -
— 4.0) =0
Q4,0
0 [A,0% - A0? _, 2A,,0% -
8_%( UTQL Q(na Un)) — U?L Q (n7vn> U?L (na Un)
0 _
@T(BnezQ(n + 27 Un+2>> =0
0 Q(n—+4,0)=0
aanrQ ’ B
0 A,0% -
av +2< 'U2 Q(nﬂvn)) = 0
0 _ y
T (BuPQ(n +2,u12)) = BulPQ (042, 0000)
n+2
this implies
A0? 24,,0% - A0?
- U% Q (nv Uﬂ) + Ug Q(na Un) + 72L Q (TL + 27Un+2> =0
multiplying this equation by —#%2, we get
Q' (n,v,) — —Q(n,v,) — Q' (n+2,v42) =0 (4.2.7)

Un,
now, we differentiate equation (4.2.7) with respect to v, keeping v,,o fixed, we
obtain the ODE

Q”(n’ Un) — 362/(”’ Un) + —ZQ(TL,U”) =0

Up v2
multiplying by v2, we get
v2Q" (n,v,) — 2v,Q' (n,v,) + 2Q(n,v,) =0
which is Euler differential equation, whose solution is given by
Q(n,v,) = anv2 + Buvy, (4.2.8)

for some arbitrary function & and 3 of n. We substitute equation (4.2.8) into (4.2.7),

we get

—200, 12U 42 — (Bn + Bn-i—Z) =0
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this equation can be spilt by gathering together all terms with the same dependence

upon vy, o
1: B+ Buya =0
Upto @ 20,49 =0
we have
Qnio = 0 which implies &, =0
we have also
B+ B2 =0

which is a second order linear difference equation whose general solution is

Bn = (=i)"c1 + (i)"ca

for some arbitrary constants ¢; and c¢o. So we get two characteristics and their

corresponding generators are as follows:

Xl = (i)"vnﬁvn + (i)n+lvn+1avn+1 + (Z.)TH—QUn_i_Qa'Un_’_Q + (i)n+3vn+3avn+3

X2 = (—z)”vnavn + (—i)"+1vn+1avn+1 + (—i)”+20n+2(‘3vn+2 + (—i)”+3vn+381}n+3

Now, utilizing X, we introduce the canonical coordinate

d
Sn :/ In__ (—1)" Inw,

(i)”vn

Now, we want to find the invariant using equation (3.2.7) we obtain

dv,, _ A1 _ AV 12 _ AUy 13 _ @
(Z)nvn (i)n+lvn+1 (i)n+221n+2 (i)n+3vn+3 0
We proceed as in the previous equation to find the invariant. We get 6 constants

21, %9, -+ , 26. Using the first | 22— ) and the third _dunts invariants, we get
& GRE

(3)™vn, 1)n+2u,

Inv, + ¢y = —Inv,0 which implies — co = Inv,v,19
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where c; € R, so
Cc2

29 = UpUpia, where zo = e~

also, we have

dv,  dvy,
(i)v, 0
which implies that
Uy = z such that z = f(z1, 29, , 2)
where z;,7 = 1,--- ,6 and z are constants.
we choose f(z1, 22, -, 26) = 22 = VU2, therefore

Up = UnUn+2

Apply the shift operator to v, yields

Sq_]n = 6n+1 = Un+1Un+3

9 _ _
S Up = Uny2 = Up42Uni4
o Un+42Un
An + annanrZ
Up
An + Bn@n

which is a second order difference equation, which we solve to find v,,. From the

above equation we have

1

1
— :A_+Bn

Un+-2 Un

Let v, = % we obtain

Yn+2 = An’)/n + Bn
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This equation can be solved recursively. Let vy and v; be given, then
Y2 = Aoy + Bo
Y3 =Aim + Bi
Y4 = AoAzyo + A By + By
s = A1Asy + AzBy + Bs
Y6 = AoAgAyyo + A2 AyBy + AyBs + By
vr = A1AsAsy + AsAs By + AsBs + Bs
So the general solution given by
n—1 n—1 n—1
P2n+m = Ym H Agiyym + Z (321'2 H A2m>, m=0,1
11=0 12=0 m=io+1
but 7, = = so
n
1 1
— 5 m = O, ].
Yon+m
TYm Hzl =0 A211+m + 212 =0 (B222 Hm ia+1 AQm)
we have
Vontm = om y M= 071
H“ =0 A211+m + Um EZQ =0 (B2’LQ Hm io+1 AQm)
The canonical coordinate 5,
dvy,
Sp = / e (—i)" Inw,
(4)"vn
SO 8,42 — S, is an invariant. Consequently,
i — 8n = (—1)" P Inv,0 — (—9)" Inv,
= —(=0)"(Invyyo + Inwy,)
= —(—1)"(Invy12vy)
= (—=1)""(i)"(Inv,) (4.2.9)
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we have

Sy = 50 —lnl_)o

S3 = S5 +iln®1

Sy = 50 —ID@O—f—lHl_)Q

S5 = 81 +i111171 —7;1111_}3

Sg = Sp —1n170—|—1n172 —1H’U4

S7 =81 —f-Z'lHT}l —i1n63+i1n175

So the general solution of the equation (4.2.9) is

2 +m
Sontm = Sm + E T In v V2j4+m, T = 07 1

n—1 _
= S, + Z —(_Z')Qj-i-m 1Il< Um )
3=0 H“ =0 A221+m + Um 212 =0 (Bsz Hm ia+1 A2m>

where m = 0,1. From §,, = (—i)" Inv,, we obtain

Vop+m = €XP (( )2n+m32n+m)

= exp <(i)2n+m— 2n+m Z 2j+ In U2J+m) =0,1

B ( 1)n+1+1
= p-D" Um >
7=0 H'Ll =0 A211+m + Um Zzg =0 (BQZZ Hm =i9+1 A2m)

n (_1)n+j+l

1
)(71)7Z < U Um+2Um4+-4Um4-6 >
Hll =0 A211+m + U Um+4+2Um4+4Um+6 212 =0 (BQZQ Hm ia+1 AQm)

(4.2.10)

= (umum+4

Il
o

J
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The canonical coordinate s,, is
/ du,, ( 1 1 ')nl
Sp = —=—=—-—27) Inu,
vz V2 "
SO S,44 — Sy, is an invariant. Consequently,
Spid — Sp = —= — —=1 N, — ——i| Inu,
ViV R
— —i (Inup1q + Inwy,)
()
< 1 1 ) |
— — —t| Inwv,
V2 Ve
we have
S4 = Sg — Inwyg
(o)
s5=81——=——=i)Inv
5 1 NG 1
Sg = So +11nw,
83—|—< > In v
v
S8 = Sg — hlUO —|—1II’U4
( 1 1 ,)1 (\/5(1—2')5)1
S9g=81——=——4=t )| Invy—| ——— | Inv
9 1 NG 1 3 5
S10 = S92 +ilnvg — ilnvﬁ
2(1 —4)7
S7 = 83—{—(7 + 72) In ’U3—|—(\/_(1—62) In 1)7)
whose general solution is given by
Snam = Co + (_1)4n+mc1 4 (i)4n+m ( Z)4n+mc 4 S
n—1 45+m
Z( —') Vg m; m=0,1,2,3

7j=1
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Also, we have u,, = exp((\/i5 + \%i)”sn), , from this we get

U = ex 1 1 Z 4n+mc 1 4n+m 4n+mc 1 'L 4dn+m
i 4n+mc 1 1 i An+m — 4n+m 1 1 4n+m8 1 4n+m

—_

n—

1 1 4j+m
— <E + EZ> In Vgj4m |3 M = O, 1, 2, 3 (4211)
1

To find ¢g, ¢1, c3 and ¢3, we substitute n =0 and m = 0, 1, 2, 3, we obtain

J

co+cr+ceat+e3=0
CO_Cl+i02_i03:0
co+c1—coa—c3=0

Co — C1 —i62+i03:0
from this equations we get
C():Cl:CQ:Cg:O

So the greneral solution of equation (4.2.11) is

( 1 )4n+m + ( 1 4n+m ( 1 )4j+m1
Udn+m = €XP Sm N V454m
. f vz o f Z "

n—1
= ul; " T (0ajm) 0" m=0,1,2,3 (4.2.12)
j=0
Substituting m = 0, 1 in equation (4.2.10), we obtain

(71)n+j+1

1) UpUU4Ue

n—1
(
(% (U0U4)
= n—1 n—1
j=0 Hilzo Asiy+m + Uou2ugug ZiFO (BQiQ Hm int1 A2m)

(—1)n+i+l

n—1
U USUSU
_1n 1U3U5U7
Von41 = (U1u5)( ) | | ( >
. n—1
J=0 H 0 A2ii+m + ULUsUSUZ Z (3222 Hm in+1 AZm)

(4.2.13)
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Substituting m = 0, 1,2, 3 in equation (4.2.12), we get

Substituting n = 1,2, - - -

n—1
—1)0 —_1)nti+1
wgn = uly V" [ J(0a) Y
Jj=0
n—1
1)t —1)nti+1
Ugn+1 = Ugn ) H(U4j+1)( )
Jj=0
n—1
—1)2 _1)nti+1
Ugny2 = uﬁn ) H('U4j+2)( )
Jj=0
n—1
o —1 3 —1 n+j+1
Ugn+3 = U‘?(n ) (U4j+3)( )
Jj=0
, we obtain
-1
Ug = Uy Vo
-1
Us = Uy U1
-1
Ug = Ug Vg
_ -1
U7 = Ug V3
V4
ug = Ug—
Vo
Vs
Ug = U1—
U1
U = U2 —
Vg
Uyl = Us—
U3
Ug
U1g = Ug—
V4
U1z = Us—
Us
V10
Ug = Us——
Ve
Ui
U5 = U7——
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So we can write the soulution as

n—
Ugk+4

Ugn = U H
Ugk

n—1

. U8k+5
Ugn+1 = U1 "
o V6k+1

n—1

. U8k+6
Ugn+2 = U2 "
g U8k+2

USk+7
Ugn43 = U3 v .
8k+3

n—1

. Usk+8
Ugn+4 = U4 v
e U8k+4

USk+9
Ugn45 = U5 v .
8k+5

USk+10
Ugn+6 — Up v
beo U8K+6

. Usk+11
Ugn+7 = U7 —

From equtions (4.2.13), we get

4k+1 4k+1
n—1 H A2z1 + UgU2U4Ug 212 =0 (BQZQ Hm:i2+1 A2m>

k-1 k-1
k=0 H o A2i, + uoususug ZZQ 0 <3212 Hm:iﬁl AQm)

Ugn = Uo

4k+1 4k+1
n—1 H o A2i 11+ wususuy 212 -0 (3212 Hm:i2+1 A2m>

4k—1 k-1
k=0 TT;, 2o A2iy 11 + uauzusuy 222 -0 (3212 | | I A2m)

Ugn41 = U1

4k+2 4k+2
n—1 Hzl— Az + uguaUgug Zm 0 (Bmz Hm:i2+1 A2m>

Ugn4+2 = U2

7 4k 4k
k=0 Hi1:[) Agiy + ugUaugug Zig:O (BQiz Hm—m“ A2m)
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Ugn+3

Ugn+4

Un+5

Ugn+6

Un+7

4k+2 4k+2
n—1 Hzl— Az 41 + urususuy Zm -0 (Bmg Hm:i2+1 A2m>

Uus
7 4k 4k
k=0 Hi1:[) Agiy 11 + uruzusuy Eigzo (B% Hm =ig+1 A2m)

4k+3 4k+3
n—1 H o Aoiy + ugurusug 212 -0 (Bmz Hm:iﬁl A2m>

4k+1 4k+1
k=0 HZ -0 A2z1 + UpUU4UG 212 0 (3212 Hm:i2+1 AQm)

Uy

4k+3 4k+3
n—1 H A27,1+1 + u1uzusUy 212 -0 (B2i2 Hm:i2+1 A2m>

Us

4k+1 4k+1 4k+1

k=0 H o Azii41 + uruzusuy 22220 (B2z‘z Hm:ig—i—l A2m)
4k+4 4k+4

w1 [0 Az, + tgugugug Y5 (B% [lnzia 1 A2m>

4k+2 4k+2
k=0 H A211 + UpU2U4 UG EZQ =0 <3212 Hm:i2+1 A2m>

Ug

4k+4 4k+4 4k+4
n—1 H A2z1+1 + uruzusU7 21220 (BQiz Hm:i2+l A2m>

uz
S rAk+2 4k+2
k=0 Hzl— Az 11 + wiususuy Zm —0 (3212 Hm:i2+1 AQm)



CONCLUSION

Lie symmetry is useful to solve nonlinear differential and difference equations. In
this thesis, we review the symmetry method that can be used to solve the differential
and difference equations. In particular, we use the symmetry method to give closed

form of solutions of sixth order difference equation

U,
Un+6 = =w
A, + Buupty, s
where the initial values wug,uq,--- ,ug are arbitrary nonzero real numbers and the
eighth order difference equation
U,
Unp48 = =w

An + BnununJrQ Un44Un+6

where the initial values ug, uy,- -+ ,ug are arbitrary nonzero real numbers .

90
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